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William D. McNally 

Peter M.Sockol 

NASA Lewis Research Center, 
Cleveland, Ohio 

REVIEW—Computational Methods 
for Internal Flows With Emphasis 
on Turbomachinery 
A review is given of current computational methods for analyzing flows in tur
bomachinery and other related internal propulsion components. The methods are 
divided primarily into two classes, inviscid and viscous. The inviscid methods deal 
specifically with turbomachinery applications. Viscous methods, on the other hand, 
due to the state-of-the-art, deal with generalized duct flows as well as flows in 
turbomachinery passages. Inviscid methods are categorized into the potential, 
stream function, and Euler approaches. Viscous methods are treated in terms of 
parabolic, partially parabolic, and elliptic procedures. 

Introduction 

The subject of internal flows is a very broad and complex 
one, encompassing a wide variety of geometries and flow 
situations. There are many examples of machinery in which 
internal flows play an important part. One such example is the 
modern turbofan engine, such as that depicted in Fig. 1. Here 
the understanding of internal flows is very important in 
predicting the performance of many key components. These 
include the inlets and exhaust nozzles at the extremeties of the 
engine, the rotating and stationary turbomachinery blade 
rows in both the compressor and turbine sections of the 
engine, the interconnecting ducts, and the combustor portion 
of the engine. In this paper, in order to make the subject more 
manageable, we have chosen to treat in detail a subset of the 
total class of internal flows. We will be speaking specifically 
about flows through turbomachinery blade rows of all types, 
as well as viscous flows through ducts of various geometries. 

The paper will be divided primarily into descriptions of 
inviscid flow methods and then viscous flow methods. In
viscid flow methods will be described in the context of tur
bomachinery blade row applications because a large number 
of analyses have been developed for these situations. For 
viscous flow methods the state-of-the-art is less well ad
vanced. Here the treatment will be expanded beyond tur
bomachinery to also encompass duct flows. The analyses 
discussed in the paper will also be limited to steady flows. 
Although some do have the capability to predict unsteady 
flow phenomena, they have been developed primarily as 
predictors for steady flows. A wide variety of flow charac
teristics exist in the various types of turbomachinery. The 
objective of the analyses to be discussed later will be to predict 
as many of these flow features as possible. First of all, large 
axial, radial and centrifugal pressure gradients exist within the 
flow passages due to the turning of the fluid within the blade 
rows. Secondly, this turning redistributes the. incoming 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript receveived by the Fluids Engineering 
Division, December 3, 1982. 

Fig. 1 Pratt & Whitney JT9D turbofan engine 

vorticity field and generates cross flows. At higher velocities 
strong shocks exist within the blade passages. These can be 
complex and interacting, and can in turn generate their own 
vorticity fields. These shocks, of course, interact with the 
blade surfaces and endwall boundary layers, often causing 
separation and additional blade loss. 

There are also a wide variety of viscous flow phenomena 
existing in the blade passages. Primarily there are the 
boundary layers which exist on all blade and endwall surfaces 
as well as on the surfaces of midspan dampers. Such bound
ary layers can have laminar, transitional, and turbulent 
regions. When pressure gradients are strong, of course, 
separation can also occur. Some separations may experience 
reattachment. Finally, there are the wakes which exist 
downstream of all blade rows. 

The resultant flow picture is extremely complex (Fig. 2), 
particularly in multistage turbomachinery. No single analysis 
can hope to model all of these flow phenomena. In the 
methods to be described here, a number of approaches are 
used to divide this overall problem into one of manageable 
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Fig. 2 Turbomachinery blade row flow features 

size. We have separated these models into two major groups, 
inviscid and viscous analyses. Within these classifications 
many other assumptions are made. First, the solution is 
usually limited to a single blade row, either stationary or 
rotating. Next, for a steady solution, the flow in all blade 
passages is taken to be identical. Within a passage the solution 
may be limited to two dimensions, on one of two types of flow 
surfaces. The first is a meridional surface, an average or mean 
flow surface between the suction and pressure sides of the 
blade (Fig. 3). The second is a blade-to-blade surface, 
generally formed by rotating one of the calculated meridional 
streamlines around the blade row in the circumferential 
direction. Such surfaces are axisymmetric and may have 
radius change from inlet to outlet. Quasi-three-dimensional 
effects can also be considered on such a surface by giving it a 
thickness which varies in the meridional flow direction from 
inlet to outlet. 

Finally, a number of decisions can be made in the process 
of reducing the full flow equations to a reasonable subset. 
Some of the assumptions and approaches used in the past will 
be summarized in the following. 

Historical Perspective. A number of articles have appeared 
in the literature reviewing the methods and theories which 
have been used to describe the fluid flow through tur
bomachinery [1-7]. These do an excellent job of reviewing the 
early work in the field, as well as some of the more recent 
approaches. 

In the 1950s and 60s, singularity methods were often used 
to compute two-dimensional incompressible potential flows 
through cascades. These have been reviewed by Gostelow [1], 
and Perkins and Horlock [3] and will not be discussed here. 

Also in the 50s and 60s classical secondary flow theory was 
developed to predict three dimensional incompressible 
rotational or vortical flow in cascades. Such methods have 
been reviewed by Horlock and Lakshminarayana [2] and 
likewise will not be discussed. 

In the 60s and early 70s finite difference approaches began 
to gain prominence, and were used to calculate two-
dimensional, subsonic, inviscid flows. Both streamline 
curvature and stream function approaches were applied on 
both meridional and blade-to-blade flow surfaces. These 
approaches are reviewed by Gostelow [1], Perkins and 
Horlock [3], and Japikse [4]. Stream function methods will be 
discussed later. 

During the 1970s time-marching solutions of the Euler 
equations began to be used to solve both two-dimensional and 
three-dimensional transonic flows in blade rows. In the 2D 
cases such methods were applied on both meridional and 
blade-to-blade surfaces. Some of these methods are reviewed 
by Japikse [4], and Habashi [5]. They will be discussed and 
updated in this paper. 

Also during the 1970s numerical solutions to the full 

Fig. 3 Turbomachinery two-dimensional flow surfaces 

potential equations for two dimensional transonic flow in 
turbomachinery began to appear. A great deal of work has 
been done to extend such methods to the present time. Early 
full potential solutions were reviewed by Habashi [5], and the 
later approaches will be discussed and updated here. 

During the 70s many of the above methods, as well as some 
early viscous approaches, began to be applied to flows in 
centrifugal impellers. These methods are reviewed in the 
paper by Adler [6] and are also discussed and updated here. In 
1977 all of the turbomachinery computational methods to 
date were discussed by Klein in an update of Scholz's classic 
work [7]. Finally the state-of-the-art in the computation of a 
wide variety of turbulent flows was addressed at the recent 
AFOSR-HTTM-Stanford Conference on Complex Turbulent 
Flows [8]. The relevant findings from this conference will also 
be discussed. 

Grid Generation. Numerical solution of fluid dynamic 
problems involves discretizing the governing equations on a 
network of points, or grid, throughout the physical domain. 
The accuracy of the resultant solution depends to a great 
degree on the properties of this grid. The subject of grid 
generation has become an active area of research, with many 
investigators and many different approaches. Coverage of 
this subject is beyond the scope of the present paper. However 
a number of reviews of the area have been published recently. 
We cite two review articles [9, 10] together with the 
proceedings of a conference devoted primarily to grid 
generation [11]. 

Outline of Paper. Inviscid flow methods are considered 
first. The Euler equations are introduced, and the difficulties 
in solving the primitive variable form are discussed. The 
stream function formulation for two dimensional flows and 
the scalar potential approximation are both presented, and 
the advantages and limitations of each described. The various 
methods currently in use for turbomachinery flow analysis are 
then reviewed. 

The next section considers viscous methods. The time-
averaged Navier-Stokes equations are introduced and the 
difficulties associated with their solution are discussed. 
Parabolic and partially parabolic approximations are 
presented, along with the advantages and limitations of each. 
The various methods in use for both turbomachinery and 
generalized duct flow analyses are then reviewed. 

Finally a short discussion on the status of turbulence 
modelling is given. The paper concludes with comments on 
future directions. 

Inviscid Methods 

Euler Equations. The ultimate equations to be solved in 
most internal flows are the viscous Navier-Stokes equations. 
However, since solving these equations on modern day 
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computers is still quite time consuming, they are often 
reduced to a simpler form, the Euler equations, by neglecting 
the viscous terms. 

These equations in two-dimensional, Cartesian, con
servation law form are as follows: 

dU dF dG 

dt dx dy 
-0 (1) 

where 

U= 

P 

pu 

pv F= 

pu 

pu1 +p 

puv 

(e+p)u 

, G = 

pv 

puv 

pv2 +p 

(e+p)u 

(2) 

p and p are the static density and pressure, u and v are the 
Cartesian velocity components in the x and y directions, and e 
is the total energy per unit volume. The system is completed 
by an equation of state relating p, p, and internal energy e. 
These equations permit variation in entropy, total pressure, 
and total temperature throughout the field, and cover the 
entire range from subsonic to supersonic flows. 

In most instances the solution to the first order steady 
equations is desired. These equations change character 
depending upon the local Mach number. In a totally super
sonic flow some very efficient methods exist for their 
solution. The method of characteristics or a simple marching 
procedure are two common approaches. In subsonic domains, 
however, no generally accepted method has yet been devised 
for solving this system. One approach used for both subsonic 
or transonic flows is to reintroduce the time terms to the 
equations. The resultant set of equations is everywhere 
hyperbolic. A steady solution can be obtained by marching 
from some initial guessed flow field through time until an 
axymptotic steady-state is achieved. 

Over the past fifteen years, a number of algorithms have 
been developed for marching the time-dependent Euler 
equations to a steady state. The initial conditions give rise to 
perturbation waves which move through the field as the 
solution progresses in time. The inviscid equations have no 
inherent dissipation and, therefore, these waves must either be 
radiated from open boundaries or absorbed by the addition of 
artificial damping terms. Generally, to reach a steady state 
requires a large number of iterations and a long com
putational time. 

A second problem with these equations is the large storage 
required on the computer. There are four primitive variables 
in 2D, five in 3D, and all four (or five) must be stored in each 
grid point. This is a major disadvantage compared to less 
general alternative methods, in which only a single unknown 
must be stored at each grid point. 

A final source of difficulty is in the boundary conditions. 
Conditions are required for all of the primitive variables on 
each of the boundaries. Some of these are supplied by the 
physics of the problem; however, other auxiliary relations 
must be obtained, e.g., through application of the method of 
characteristics at the boundary. Typically this leads to a rather 
cumbersome treatment, and in most methods approximations 
are made to the full characteristic relationships. 

A number of approaches to solving the full Euler equations 
will be surveyed later in this paper. The conventional ap
proach to circumventing the above difficulties for steady 
inviscid flow is to treat a less general problem by defining 
either a stream function or a potential function and to solve 
the resultant second order equations. 

Stream Function Equation. This equation is derived by 

pu tt) 

postulating that the mass flow components, pu and pv, are 
obtained from a scalar function as follows 

dip _ dtp 

dy ' dx 
where i// is the stream function. 

Substitution of these relations into the definition of vor
ticity yields a second order equation for \p with vorticity a 
known function of velocity, e.g., [12]. Extensive experience 
exists in the application of relaxation procedures to such 
equations. The stream function formulation retains the 
generality contained in the full Euler equations. However, it is 
limited to two-dimensional or axisymmetric flows, and made 
difficult by the fact that the density in the transonic regime is 
a double-valued function of the unknown \p. Solution for \p in 
the transonic regime is possible, and has recently been ob
tained by Hafez [12] for an isentropic isolated airfoil ap
plication. The cascade version of such a development is 
currently underway. 

A number of different subsonic stream function solutions 
have been obtained for meridional plane and blade-to-blade 
plane regions. Working in terms of the stream function solves 
many of the problems cited previously for the full Euler 
equations. The stream function gives a single second order 
partial differential equation, for which robust and well un
derstood relaxation methods exist. These solutions can 
therefore be obtained in much less computer time. The 
computer storage required is likewise much lower, 
necessitating only the storage of the stream function at each 
mesh point. Finally, the boundary conditions are more 
natural and are smaller in number. Generally Dirichlet 
boundary conditions are used at solid surfaces, and either 
Dirichlet or Neumann conditions are imposed at open sur
faces. The solution can be obtained in an order of magnitude 
less time than for the primitive-variable Euler equations. 

Full Potential Equations. Another approach to cir
cumventing the problems inherent in the full Euler equations 
is to assume that the velocity components u and v are 
derivatives of a scalar function, <p. 

u = 
dtp 

~dx~ 

dtp 

ly~ (4) 

Such a flow is automatically isentropic with constant total 
temperature and zero vorticity (irrotational). Substitution of 
these relations into the continuity equations yields a second 
order equation in <p. 

As with the stream function, the potential equation can be 
solved by efficient relaxation techniques, and requires storage 
of only a single variable. Furthermore, it permits the solution 
of three-dimensional as well as two-dimensional flows. The 
primary disadvantages are the limitation to isentropic and 
irrotational flows. The isentropic assumption implies that 
shock waves captured in the transonic regime must be limited 
in Mach number to a value less than 1.3. The irrotationality 
condition requires a uniform incoming flow in two-
dimensional situations, and a free vortex condition in three-
dimensional turbomachinery flows. 

The potential equation will admit the existence of 
discontinuities in the flow field. However, these discon
tinuities are isentropic shocks, which do not represent true 
physical shock waves because they do not satisfy the Rankine-
Hugoniot jump conditions. However, these shocks will be 
approximately of the proper strength and will exist in the 
proper position in the flow field if the Mach number of the 
flow approaching the shock is less than or equal to 1.3. 

With regard to boundary conditions for the potential 
function, Neumann or mixed conditions will exist at solid 
surfaces, and either Dirichlet or Neumann conditions at open 
surfaces. These are easier to incorporate than the more 
complicated conditions for the Euler equations. 
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Fig. 4 Supercritical stator comparison with Sanz—after Farrel! [26] 

Analyses for the inviscid equations are described next. 
Methods for the potential equation will be covered first, 
followed by those for the stream function equation, and 
finally those for the Euler equations. In most cases the 
solutions have been obtained on curvilinear meshes such as 
those discussed above. 

Potential Equation Analyses 

A great deal of progress has been made in the last ten years 
in the development of solutions to the potential equation. At 
the beginning of this period Murman and Cole [13] 
demonstrated a way to properly account for the domain of 
dependence in supersonic regions by introducing a special 
backward or upwind differencing. This had the effect of 
stabilizing solutions and permitting the first real transonic 
flow calculations using the small disturbance potential 
equation. 

Several major advances were also made by Jameson. The 
first of these [14] generalized the concepts introduced by 
Murman and Cole to the full potential equation in non-
conservation form. Solutions to the equation in this form now 
routinely use Jameson's rotated difference scheme, which 
introduces artificial damping in the supersonic region. Hafez 
et al. [15] later introduced the concept of artificial com
pressibility to accomplish the same objective when the con
servation form of the full equation is used. In this case the 
density is evaluated upstream of the point at which it is ap
plied, in order to stabilize the solution in the supersonic zone. 
Jameson [16] also proposed a method for introducing ar
tificial damping when the conservation form of the potential 
equation is used. 

A number of different authors, applying these numerical 
techniques, and using either finite difference, finite area (or 
volume), or finite element methods to discretize the potential 
equation have devised stable and accurate methods for solving 
2D transonic flows on the blade-to-blade surfaces of tur
bomachinery. 

Many of these analyses also incorporate quasi-3D effects 
through radius change and stream channel convergence. A 
number of three-dimensional applications of these methods, 
not only to turbomachinery problems but also to propeller, 
wing-body, and nacelle problems, are under development. 

Journal of Fluids Engineering 

Discretizing the Equation. There are several ways in which 
the equation is discretized to obtain a set of algebraic 
equations for solution. The three major approaches are: finite 
differences, finite areas or volumes, and finite elements. 

In the finite difference method the terms in the partial 
differential equation are discretized using standard central 
and backward (or upwind) differencing. The resultant system 
of algebraic equations is solved by standard techniques. This 
approach was applied in the early work of Dodge [17], Ives 
[18, 19], and Rae [20]. More recently this method has been 
used by Caspar [21, 22], who applies it to discrete areas 
throughout the physical domain. 

The finite volume approach is a hybrid between a finite 
difference method and a finite element method, with more of 
the latter. In this method, a local transformation is done on 
each of the volumes which discretize the flow field. The 
unknowns and the coordinates are then represented by some 
functional representation on each of these discrete volumes. 
This method is described more fully in the paper by Caughey 
and Jameson [23], and has been applied recently in the 
analyses of Dulikravich [24, 25], Farrell and Adamczyk [26], 
andFruhauf [27]. 

The third approach is the finite element method. In this 
method the physical space is discretized with triangular or 
quadrilateral shaped elements generated in an arbitrary 
fashion. The potential function is approximated within each 
element by a linear combination of mesh point values for the 
function based on locally defined shape functions assigned to 
the element. One of the standard weighted residuals methods, 
usually the Galerkin method, is then used to reduce the partial 
differential equation to an algebraic system which is solved 
directly during each iteration. 

Finite element methods have been used extensively in the 
blade-to-blade calculation methods of Laskaris [28, 29], Ecer 
and Akay [30, 31], and Hirsch and Deconinck [32]. The 
Laskaris work is primarily subsonic, with a three-dimensional 
application presented in [29]. The Ecer and Hirsch algorithms 
have been extended to the transonic range for turbomachinery 
applications. 

Stabilization in the Supersonic Zone. As mentioned 
previously, there are two principal techniques which are used 
to stabilize the solution in the supersonic zone, the artificial 
viscosity approach of Jameson [14], and the artificial com
pressibility approach of Hafez et al. [15]. The intent of these 
approaches is to modify the differencing in the critical flow 
regions such that the grid points contributing to the solution 
at a given point lie primarily within its zone of influence. 
Jameson's rotated scheme identifies both hyperbolic and 
elliptic operators in supersonic zones. Upwind differences are 
used for the former and central differences for the latter. This 
has the effect of introducing an artificial viscosity to the 
solution procedure, which assures its stability in supersonic 
regions. This artificial viscosity approach is employed 
principally by investigators using the nonconservation form 
of the full potential equation, Dulikravich [24], Ives [18], Rae 
[20], and Fruhauf [27]. Dodge [17], who also solves the 
nonconservation form, constructs hyperbolic and elliptic 
operators on a near-characteristic grid, updated during the 
course of calculation. The artificial compressibility scheme of 
Hafez, which achieves the same objectives as the artificial 
viscosity approach, has been employed by investigators 
solving the conservation form of the full potential equation, 
Caspar [21], Farrell [26], Ecer [30], and Hirsch [32]. 

Solution of the Algebraic Equations. Several different 
techniques have been used to solve the algebraic system. The 
first, and most common, is successive line over relaxation 
(SLOR). This is employed by Farrell [26], Dulikravich [24, 
25], Ives [18, 19], Fruhauf [27], Rae [20], and Hirsch [32]. 
Other approaches employ a direct solver, typically Gaussian 
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Fig. 5 VKI turbine cascade comparison with experiment—after Hirsch 
[32] 

elimination, as the noniterative part of an overall solution 
scheme. Ecer [30, 31], Laskaris [28, 29], and Caspar [21, 22] 
employ this approach. The final method is approximate 
factorization or ADI, as applied by Hoist [33, 34]. This 
approach can be an order of magnitude faster than traditional 
relaxation. However, it has only been applied to tur-
bomachinery problems by Hirsch [32]. 

Another approach for solving the difference equations even 
more rapidly than approximate factorization is the use of 
multi-grid techniques. Such techniques were demonstrated for 
external flow applications by South and Brandt [35] and 
Jameson [36], who extended the methods initially developed 
by Brandt [37]. To date Hirsch [32] is the only one to apply 
the multi-grid approach to the solution of the potential 
equation for turbomachinery. 

Results for Potential Equation. The results presented are 
for 2D and quasi-3D blade-to-blade stream surfaces, as well 
as complete 3D flow passage analyses. Most of the references 
discussed do an excellent job of predicting transonic flows in 
compressor and turbine blade rows with Mach numbers below 
1.3. 

Results of Farrell [26] are shown in Fig. 4 for a supercritical 
compressor stator tip section designed for NASA Lewis by 
Sanz using a hodograph technique based on Bauer et al. [38]. 
The trailing edge of this blade ends in a cusp. The inlet Mach 
number is 0.71, and inlet flow angle 31.16 deg. The results 
show good agreement with the hodograph solution with some 
evidence of a weak shock in the recompression region. This 
might have been more pronounced with a finer grid. 

The results shown in Fig. 5 were obtained by Hirsch [32] 
using a finite element blade-to-blade code. They show Mach 
number calculated for a VKI-LS59 gas turbine cascade. The 
inlet Mach number is 0.281, inlet flow angle 30.0 deg, outlet 
Mach number 0.975, and outlet flow angle -65.89 deg. The 
stream channel convergence in the through flow direction is 
unity. The comparison with experimental data in this ac
celerating flow situation is extremely good, even in the 
transonic region at the rear end of the blade. 

Finally, results computed with the 3D code of Dulikravich 
[25, 39] are presented in Fig. 6. These are for an idealized 
rotor with upstream axial Mach number of 0.62 and 
rotational speed of 1000 rpm. This corresponds to an up-' 
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Fig. 6 3D full potential rotor calculation—after Dulikravich [39] 

stream relative tip Mach number of 0.87. Hub and tip radii 
were one and two meters, respectively. The code cannot treat 
cases with supersonic upstream flow relative to the rotor. 
Regions of supersonic flow are present on all blade surfaces 
from hub to shroud, with fairly strong shocks in the tip 
region. Peak Mach numbers reach values of approximately 
1.5 at the tip. Two grids were used to obtain this solution, 
with coarse grid results interpolated to provide initial values 
on the fine grid. The coarse grid used 24 points around the 
blade by 6 normal and 6 radial and the fine grid used double 
those mesh dimensions in all directions. 

Stream Function Equation Analyses 

Stream function equation applications to turbomachinery 
occurred about ten years prior to those for the full potential 
equation. A major development paving the way for analyses 
of turbomachinery flows was the series of early papers by Wu, 
particularly [40], which derived the stream function equations 
for hub-to-shroud and blade-to-blade stream surfaces of 
turbomachinery. Derivation of the equations on the two 
intersecting surfaces is complex, and the reader is referred to 
details in Wu and the other references to be given. 

Historical Development and Applications. The two earliest 
developers of stream function analyses for turbomachinery 
worked independently, Katsanis in the United States and 
Marsh in England. Katsanis [41] published a method for 
isentropic blade-to-blade flows applicable to any fixed or 
rotating axial, radial or mixed flow turbomachinery blade 
row. Quasi-3D effects were incorporated through a stream 
channel thickness. Wood [42] has since devised methods for 
extending Katsanis's approaches into the low transonic 
region. Katsanis and McNally [43] also published anlayses for 
slotted or tandem blade rows, as well as a method [44] to 
magnify the solution around the blade edges. 

Marsh [45] developed a stream function analysis for hub-
shroud surfaces. His non-rectangular grid was composed of 
parallel lines in the radial direction and through-flow lines 
following the shape of the hub and shroud boundaries. This is 
in contrast to the rectangular grid employed by Katsanis. 
Marsh's technique also applied to axial, radial and mixed 
flow turbomachines. Smith [46] contrasted results from 
Marsh's code to those of established streamline curvature 
methods, and showed significant advances in the calculation 
of quasi-3D flows using stream function methods. 

In 1970 Smith [47] and Frost applied these methods to 
compute flow on general blade-to-blade stream surfaces. 
Smith [48] also described both the meridional and the blade-
to-blade analyses in use at N.G.T.E. This was the first 
description of the meridional and blade-to-blade methods 
used together. 

Other codes for both hub-to-shroud and blade-to-blade 
analyses were developed at Carleton University by Davis and 
Millar [49-52]. In 1975 Davis [53] presented the first hub-to-
shroud stream function solution for flow in a centrifugal 
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Fig. 7 Calculated and experimental static pressure on impeller 
hub—after Hirsch [66] 
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Fig. 8 Calculated and experimental static pressure on impeller 
shroud—after Hirsch [66] 

compressor. He used a special form of through-flow grid 
which remained quasi-orthogonal throughout the solution 
domain. Davis also incorporated a turbulent endwall 
calculation, using an integral method based on the en
trapment theory of Head [54]. 

In 1974 Katsanis and McNally [55] described their hub-to-
shroud stream function code for use with the blade-to-blade 
analysis of [41]. This code applied to single axial or mixed 
flow compressor and turbine blade rows. In 1977, the same 
authors [56, 57] extended this code to radial or centrifugal 
blade rows. 

Marsh in 1976 [58] compared his stream function method to 
streamline curvature techniques for the hub-shroud problem. 
He concluded that both these techniques could be viewed as 
two methods for solving the same governing equations on the 
same mean surface, but did not find any definite superiority 
of one method over the other. 

Multi-Surface Iterative Approaches. In 1976 Bosman [59], 
presented an iterative approach to couple hub-to-shroud and 
blade-to-blade analyses. Locations of the axisymmetric blade-
to-blade surfaces are taken from streamlines on a single hub-
to-shroud surface. The blade-to-blade solutions are then used 
to redefine the hub-to-shroud surface. This process is iterated 
to convergence. Bosman applied his techniques to calculate 
flows in a low speed centrifugal compressor and a radial 
inflow turbine. 

A second, more elaborate iterative procedure was described 
by Adler and Krimerman [60-62]. The method is initiated by 

normal applications of meridional and blade-to-blade 
calculations on axisymmetric stream surfaces. A number of 
different hub-to-shroud stream surfaces are then obtained 
from corresponding streamlines in the blade-to-blade sur
faces. Multiple hub-shroud solutions are then used to obtain 
blade-to-blade surfaces by connecting corresponding 
streamlines. These surfaces are no longer axisymmetric. 
Iteration between the two families of surfaces is continued to 
convergence. Adler applies this technique to a centrifugal 
impeller, and shows that the results clearly deviate from those 
obtained using a single meridional surface. 

Hirsch [63] presented the first solution of the meridional 
stream function equation based on the finite element method. 
Later, Hirsch developed an iterated analysis [64] in which 
meridional and blade-to-blade finite element analyses were 
combined for application to axial turbomachinery. Second-
order isoparametric quadrilateral elements were used to 
permit accurate simulation of blade curvature. Results 
compared favorably with the LDV data obtained by DFVLR 
in Germany [65]. In 1980 Hirsch [66] presented an iterative 
analysis for centrifugal compressors, and applied it to the 
radial compressor mapped with LDV by Eckardt [67]. The 
viscous and secondary flow effects were not well reproduced 
with the through-flow calculations particularly in the back 
end of the compressor. Hirsch also presented a quasi-3D 
calculation on the Type-B centrifugal compressor described in 
reference [68]. Figures 7 and 8 show calculated and ex
perimental static pressure distributions on the hub and shroud 
sections for a flow coefficient of 0.5. The inviscid calculations 
predict a stronger local acceleration along the shroud suction 
surface than experimentally determined. 

Finally, in 1980 Goulas [69] presented a stream function 
analysis for the blade-to-blade flow in a centrifugal com
pressor with splitter blades. The analysis can either calculate 
isentropically, or simulate turbulent flow with the addition of 
a simple turbulence model. The method treats stagnation 
points as well as the formation of small recirculation zones at 
the front of the splitter blades. The method was applied to a 
centrifugal compressor, and various axial locations for the 
leading edge of the splitter were studied. 

Multi-Stage Meridional Capability. Of the methods just 
described for anlayzing hub-shroud flow with stream function 
analyses, the methods of Marsh [45], Smith [48], Davis [49, 
51], and Hirsch [63, 64] all permit the analysis of multi-stage 
machines. The method of Davis, however, was only 
demonstrated [49, 51] for a single full stage machine. On the 
other hand, the methods of Katsanis [55, 56], and Bosman 
[59] apply to a single blade row. 

Transonic and Three-Dimensional Flows. Recently Hafez 
[12] has extended the solution of the stream function equation 
to transonic flows by using techniques developed for the 
potential equation. His methods circumvent the fact that the 
density is not a unique function of the mass flux, having both 
subsonic and supersonic solutions. The method is applied to 
transonic flows over a NACA 0012 airfoil, a 10% parabolic 
airfoil, and a cylinder. These results are compared to both 
potential and Euler solutions. Hafez has likewise investigated 
the application of stream function methods to three-
dimensional flows through the use of two stream functions. 
This work is ongoing. 
Euler Equation Analyses 

Explicit Time Marching Methods. Explicit solutions to the 
Euler equations have been under development for a number 
of years, with applications for internal flow situations dating 
back to the 1950s. An explicit method is one in which all 
spatial derivatives are evaluated using known conditions at an 
old time level. The resultant methods are simple and easy to 
code. All such methods, however, are limited by the so-called 
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Courant, Friedrichs, and Lewy (CFL) stability limit, which 
states that the domain of dependence of the numerical scheme 
must contain the domain of dependence of the original 
equations. 

MacCormack [71] introduced a two-step predictor-
corrector method, which alternates between forward and 
backward differencing on the two steps. The ease with which 
this method can be applied has led to many applications in the 
turbomachinery field. An early application of the Mac
Cormack scheme by Gopalakrishnan and Bozzola [72] was 
for a transonic compressor cascade with supersonic inlet and 
subsonic outlet. Kurzrock and Novick [73] have applied this 
scheme to a rotating blade-to-blade stream surface, with 
radius change and stream channel convergence. They 
calculated transonic flow in a 2D compressor cascade and also 
flow on a quasi-3D stream surface of a compressor rotor. 
Thompkins [74] has applied the MacCormack algorithm to 
flow through a three-dimensional transonic compressor rotor. 
Calculations can be made for any general blade shape, in
cluding those with part-span shrouds. Computed results will 
be presented later. 

Another set of explicit methods is obtained by writing the 
conservation laws in integral form and applying them to local 
control volumes surrounding each grid point. The fluxes of 
mass, momentum, and energy crossing the control surfaces 
are evaluated using the values from surrounding points. A 
first order integration in time is then used to advance the 
dependent variables forward to a steady state. McDonald [75] 
applied this approach to 2D transonic flow in axial turbine 
cascades. His method includes the use of hexagonal elements 
surrounding each grid point and the replacement of the energy 
equation by assuming constant total enthalpy. Computed and 
experimental results were compared for a number of high-
turning turbine cascades with supersonic exits. 

Denton [76-78] has developed a somewhat simpler method 
for both 2D and 3D turbomachinery flows. Denton employs 
quadrilateral elements in two dimensions and six-sided 
elements in 3D, which lead to simpler expressions for his 
surface flux integrals. In order to ensure stability he uses 
upwind differencing in the streamwise direction for the fluxes 
of mass and momentum, while using downwind differencing 
for pressure. Central differencing is used for all quantities in 
the pitchwise direction. This scheme has the property that 
stability depends only on the axial Mach number, as opposed 
to the absolute Mach number. This method has been applied 
to a wide variety of both axial and mixed flow compressor and 
turbine geometries. 

Bosman and Highton [79] have developed a method for 3D 
flows which employes two overlapping grids with density and 
internal energy evaluated at one set of nodes and velocities 
evaluated at the second set. Primitive variables are updated in 
a sequential fashion. The method has been applied to both 
radial inflow turbines [79] and to centrifugal compressor 
impellers [80]. 

Recent efforts have been devoted to improving both the 
accuracy and the speed of explicit methods. One example is 
Moretti's X-scheme [81] which exploits concepts from the 
method of characteristics. The Euler equations are rewritten 
so that the right-hand sides involve derivatives of one-
dimensional Riemann invariants. These derivatives are ap
proximated by one-sided differences in characteristic 
directions and unknowns are updated in time by a two-step 
predictor-corrector scheme. This results in improved accuracy 
as evidenced by very sharp shocks captured with modest 
numbers of grid points. The method produces isentropic 
shocks unless it is corrected with a shock fitting procedure, as 
in De Neef and Moretti [82]. A modified version has been 
applied to simple compressor and turbine cascades by Pan-
dolfi and Zannetti [83]. A similar method to the X-scheme has . 
been developed by Chakravarthy et al. [84]. 

Ni [85] has developed a new method that is equivalent to the 
second-order Lax-Wendroff procedures (see Richtmyer and 
Morton [86]). By spatially varying the time-step to be 
everywhere near the CFL limit, a significant increase in 
overall speed is obtained. In addition, this effectively biases 
the differencing such that the numerical scheme has a domain 
of dependence close to that of the underlying hyperbolic 
system. Ni's method has been coupled with a multiple-grid 
procedure which greatly speeds convergence to a final steady 
state. Applications in [85] were for transonic flow in a turbine 
cascade as well as an axisymmetric nacelle with centerbody. 

Improved convergence rates can also be obtained by adding 
pseudo-unsteady terms to the steady equations. When 
properly constructed, these artificial terms can introduce a 
strong internal damping into the resulting unsteady system. 
Essers [87] added artificial unsteady terms to the continuity 
and irrotationality equations. This results in two equations in 
the unknown velocities, with density obtained from the 
isentropic relationship. These equations are solved by a 
predictor-corrector scheme. Results are presented for two-
dimensional flow through a turbine rotor blade section with 
supersonic exit. 

Another pseudo-unsteady method has been developed by 
Viviand and Veuillot [88, 89]. The energy equation is replaced 
by constant total enthalpy, and the pressure expressed as a 
function of density and velocity. The reduced system is solved 
by a predictor-corrector scheme. Since the system has no 
unusual damping mechanism the method relies on careful 
treatment of waves at the boundaries in order to reach a 
steady state. A three-dimensional version has been developed 
by Brochet [90, 91] and applied to flow in a supersonic 
compressor cascade with converging endwalls and to tran
sonic flow in a fan rotor. 

Implicit Time Marching Methods. Implicit time-marching 
methods for both the Euler and the Navier-Stokes equations 
date from the mid-1970s. In these methods the equations are 
backward differenced in time, and the nonlinear terms at the 
new time are linearized about their values at the previous time 
level. Introduction of differences gives a large system of 
algebraic equations for the unknowns at the new time level. In 
each of the methods to be discussed here, these equations are 
solved by block alternating-direction-implicit (block ADI) 
techniques. 

The first of these methods was introduced by Briley and 
McDonald [92, 93], primarily for the compressible Navier-
Stokes equations. Beam and Warming [94] independently 
developed a similar method for the Euler equations. Briley 
and McDonald [95] have since shown that when the Beam and 
Warming algorithm is written in the "delta" form to solve for 
the corrections to the unknowns, the two methods have 
identical matrix structures. 

Steger [96, 97] has developed a curvilinear coordinate 
version of the Beam-Warming algorithm for viscous as well as 
inviscid flows, and has applied it to both isolated airfoils and 
cascades in two dimensions. Shamroth et al. [98] have applied 
the Briley-McDonald procedure to laminar and turbulent flow 
through a cascade. Finally, Fruhauf [27] has applied the 
Beam-Warming algorithm to solve the Euler equations for 
both subsonic and supercritical flow through cascades. 

New Methods Under Development. A number of methods 
are under development in order to achieve more accurate and 
faster solutions for the Euler equations. Delaney [99] has 
developed a hopscotch method for solving the Euler equations 
for application to cascades. The method appears to be 
significantly faster than the original MacCormack algorithm. 

Denton [100] has extended his earlier Euler method by 
employing a simpler more accurate differencing scheme. He 
has also increased the convergence speed through the use of a 
simple multiple-grid procedure. He has applied the method to 

12/Vol. 107, MARCH 1985 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 9 Measured Mach number contours near tip of NASA transonic 
compressor rotor—after Chima [105] 

IKCRB1BIT - J>t 

Fig. 10 Calculated Mach number contours near tip of NASA transonic 
compressor rotor—Thompkins method—after Chima [105] 

2D transonic flow in both compressor and turbine blade rows. 
Johnson [101] has developed a new technique in which the 
first-order steady Euler equations are imbedded in a second-
order system. Published results to date include both sub-
critical and supercritical flow in a two-dimensional channel 
with a bump on one wall. 

Both Ecer and Akay [102] and Lacor and Hirsch [103] have 
developed methods for solving the steady Euler equations. 
The velocity is split into potential and rotational parts and the 
system of equations is reduced to a second order equation for 
a potential function and a pair of first order convective 
equations describing the evolution of two scalars which 
together determine the rotational part of the velocity field. 
Both methods employ finite element techniques. Ecer has 
analyzed 2D transonic flow in a channel with a bump and 
flow around a 2D cylinder. Hirsch calcualted 3D flow in a 
rectangular elbow with 90 deg of turning. 

Finally Chang and Adamczyk [104] have developed a new 
semi-direct algorithm for computing three-dimensional in-
viscid shear flows. The velocity and density fields are 
evaluated for known vorticity, total enthalpy and entropy 
from the solution of a pair of Poisson equations by three-
dimensional, fast, direct solvers. The vorticity, total enthalpy 
and entropy are updated by solving convective equations for a 
pair of scalars. In the present work, finite difference 
procedures are used throughout. To date the method has been 
applied to study the development of inviscid shear flows in 
turning channels. 

Applications of Euler Methods. Results are presented to 
indicate the kinds of calculations which are being performed 
with the Euler methods. Thompkins' code [74] has been 
applied at NASA by Chima and Strazisar [105] to calculate 
the three-dimensional flow in a transonic axial compressor 
rotor for which laser anemometer measurements were also 
obtained. Figure 9 shows Mach number contours for the 
measured results at a section 15 A from the tip of the blade. 
These results can be compared to the calculated contours at 
the same location in Fig. 10. These figures indicate a 
pronounced bowwave and passage shock system, and show 
good agreement between the measured and calculated results 
for this feature. 

The method of Ni [85] has been applied to flow past a VK1 
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Fig. 11 Calculated and measured surface Mach number on VKI tur
bine rotor—after Ni [85] 

Fig. 12 Mach number contours for VKI turbine rotor—after Ni [85] 

gas turbine rotor blade, and compared to data by Sieverding 
[106]. Figure 11 presents calculated and experimental surface 
Mach numbers for this turbine rotor. The agreement is ex
cellent on both blade surfaces. Figure 12 indicates the mesh 
used in the calculation and shows the calculated Mach number 
contours. 

Viscous Methods 
Full Viscous Equations. Most flows of engineering interest 

are adequately described by the compressible Navier-Stokes 
equations. These equations, in two-dimensional conservation 
form and Cartesian (x, y) coordinates, are written 

dU dF dG 
1 1 = 

dt dx dy 

3R 
-

dx 

dS 

'dy 
(5) 

where U, F, and G are the same as for the Euler equations, 
and 
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Here fi is the viscosity coefficient and K is the coefficient of 
thermal conductivity. 

These equations are valid for turbulent flows, but such 
computations are impractical today due to the large range of 
length scales in the turbulent spectra. The equations are 
replaced by time-averaged equations and the Reynolds 
stresses, e.g. —p u'v', are modelled through the addition of 
auxiliary algebraic or differential relations. If an "eddy 
viscosity" model is adopted for the Reynolds stresses, the 
above equations will hold for the mean fluid variables p, u, v, 
e, with ix and K replaced by their effective turbulent values. 
For practical engineering flows with curved boundaries, the 
Cartesian equations are transformed to curvilinear body-
fitted coordinates and, for steady flows, the time derivatives 
are often retained as an aid in the solution process. The 
resulting equations are quite difficult to solve for a number of 
reasons. First, many disparate length scales must be resolved, 
e.g., those associated with boundary layers and shock waves. 
This requires a large number of grid points even for a 
minimum description. Second, a large number of quantities 
are needed at every grid point. For example, in three-
dimensional flow, one might need five primitive variables, 
two turbulence properties, and nine or more metric 
derivatives. Hence a very large computer memory and long 
running times are needed. Third, the numerical problems 
associated with the Euler equations are still present. One such 
problem often occurs when the local cell Reynolds number, 
puAx/ii, exceeds 2 and the solution becomes either unstable or 
highly inaccurate. The common "fix" of locally switching 
from central to first order upwind differencing of the con-
vective term can introduce excessive numerical diffusion. 

Many techniques have been developed over the years for 
viscous problems which solve simpler sets of equations. We 
consider only those for steady flows, and group them into two 
categories. 

Partially Parabolic Approximation. The partially parabolic 
approximation assumes the existence of a main flow direc
tion, known a priori. In general, flow separation is excluded. 
The viscous terms are simplified by neglecting diffusion in 
this direction. This is much like the boundary layer ap
proximation. In two dimensions, if x is the flow direction, R, 
ryv, and dy/d x are set to zero in equations (5) to (7). For three 
dimensions see Caretto, Curr, and Spalding [107]. One 
variable, usually the pressure, is treated as elliptic and stored 
at every grid point. The remaining variables, e.g., u, v, e in 
2D, are treated as parabolic and stored on only two or three 
cross-sections at a time. Given an approximate pressure field 
the momentum and energy equations are marched in the flow 
direction and the variables are corrected locally to satisfy 
continuity. After each marching sweep, the pressure field is 
updated by solving an elliptic equation on the entire grid. This 
sequence of marching followed by pressure update is repeated 
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until convergence. The approximation is applicable to many 
internal flows including those in turning ducts and tur-
bomachinery blade rows as long as the details of the flow in 
the leading and trailing edge regions are not critical and 
separation is negligible. 

Fully Parabolic Approximation. The fully parabolic ap
proximation uses the same assumptions as the above with 
regard to the main flow direction and the neglect of 
streamwise viscous diffusion. In addition, upstream trans
mission of pressure disturbances generated during the 
calculation is assumed negligible. An initial pressure field, 
stored on the full grid, is assumed to contain all of the effects 
of boundary curvature. The remaining variables are stored on 
only two or three cross sections at a time. The momentum and 
energy equations, or an equivalent set, are marched once in 
the flow direction, and the variables are corrected at each 
cross section in order to satisfy continuity. This procedure 
should be applicable to flows in duct-like geometries with 
moderate turning in the absence of streamwise separation. 
Since only a single marching sweep is employed, these 
computations should be orders of magnitude faster than time 
marching procedures. 

Both parabolic approximations are capable in principle of 
predicting strong secondary flows provided local continuity is 
well satisfied. Both can also treat modest amounts of 
streamwise separation if the Flugge-Lotz and Rehyner ap
proximation is adopted, i.e., streamwise velocity is artificially 
prevented from becoming negative in the convective term 
only. 

Methods are now discussed in each of the above categories 
starting with the fully parabolic approximation. Within each 
category, the main elements of a solution procedure are 
presented along with the distinguishing features of each 
method. 

Fully Parabolic Methods 

Main Parabolizing Assumption. All of the methods in this 
category require an additional assumption, beyond the neglect 
of streamwise viscous diffusion, in order to obtain a fully 
parabolic system. In the usual procedure a bulk pressure 
correction, pc, uniform over each cross section, is introduced 
into the streamwise momentum equation and determined so 
as to ensure the correct total mass flux. The cross flow 
equations retain a separate pressure correction pc which is 
permitted to vary over the cross section. This procedure is 
employed by Patankar and Spalding [108], Briley [109], Ghia 
et al. [110], Roberts and Forester [111], and Briley and 
McDonald [112]. 

A different procedure is employed by Anderson [113] in 2D 
and Anderson and Hankins [114] in 3D. The equations are 
parabolized by writing them in an intrinsic coordinate system 
which could be obtained for example from an incompressible 
potential flow solution. The assumption of small velocities 
normal to the streamwise grid lines eliminates convective 
derivatives and viscous terms in the transverse momentum 
equations. The resulting system is fully parabolic with 
characteristic surfaces coincident with the cross-planes. 
Hence, no bulk pressure correction is required. 

Satisfaction of Local Continuity. To satisfy local con
tinuity, Patankar and Spalding [108] introduce approximate 
relations between the velocities and pressure corrections 
obtained from the transverse momentum equations. Sub
stitution into continuity gives a 2D elliptic equation over the 
cross-section. Another approach, adopted by Briley [109] and 
Ghia et al. [110], assumes a 2D potential <p for the transverse 
velocity corrections. Continuity yields a 2D elliptic equation 
for <p in the cross-plane, and the divergence of the transverse 
momentum equations provides a second elliptic equation for 
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Fig. 13 Computed and measured axial velocity profiles after 77.5 deg 
turning in circular arc square duct—after Kreskovsky [118] 

the pressure correction. Roberts and Forester [111] work 
directly with the divergence of the transverse momentum 
equations which gives a 2D elliptic equation with a source 
term related to the non-satisfaction of local continuity. This 
equation is solved iteratively with the momentum equations 
until continuity is satisfied. This technique is related to that of 
Harlow and Welch [115] for 2D time-dependent flows. Briley 
and McDonald [112] split the transverse velocity into 
irrotational and rotational parts described by a 2D potential <p 
and stream function \j/, respectively. Substitution into con
tinuity and the definition of streamwise vorticity ois gives 2D 
elliptic equations for <p and \p. The latter is solved coupled 
with the transport equation for cos which replaces both 
transverse momentum equations. Anderson [114] uses the 
same splitting as Briley and McDonald and solves for <p, \p, 
and ojj. However, the Poisson equation for pressure p is 
added to the system. 

Approximation by Algebraic System. All of the methods 
use finite difference techniques to approximate the viscous 
equations by an algebraic system. First order upwind dif
ferences are used in the main flow direction and second order 
central differences in the cross-plane. Within this common 
framework, a few variations deserve comment. Patankar and 
Spalding [108] use a staggered grid similar to that of Harlow 
and Welch [115]. Velocity components and pressures are 
stored at different locations within a grid cell in order to 
simplify differencing of the convective terms. The other 
methods store all variables at common locations within the 
grid. For large transverse velocities both Patankar and 
Spalding [108] and Ghia et al. [110] switch to upwind dif
ferencing in the cross-plane. Roberts and Forester [111] add 
explicit local damping to deal with this problem. The other 
methods have not encountered this problem. Anderson [113] 
in his 2D method applied Keller's box scheme to a system of 
first order partial differential equations. In the current 
version [114] for 3D flows, a system of second order 
equations with differencing similar to the other methods is 
employed. 

Solution of Algebraic System. To solve the algebraic 
equations at each cross-section, Patankar and Spalding [108] 
obtain provisional velocity components from the momentum 
equations by an ADI technique, and the bulk correction pc 

from a global mass balance over the section. The local 
correction pc is obtained from the 2D elliptic equation by 
several ADI sweeps, and the velocities are corrected using the 
approximate velocity-pressure correction relation. Finally, the 
energy equation is solved by ADI. The procedures of Briley 
[109] and Ghia et al. [110] are similar to the above, except that 
pc is determined iteratively with the streamwise velocity, and 
the 2D elliptic equations for <p and pc are solved by point 
SOR. Roberts and Forester [111] follow a sequence similar to 
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Fig. 14 Computed and measured radial flow velocity profiles after 
77.5 deg turning in circular arc square duct—after Kreskovsky [118] 

that of Briley, without the equation for <p. However, the entire 
sequence is repeated iteratively at each cross-section using 
updated pressures in the momentum equations until con
vergence is achieved. Briley and McDonald [112] solve for the 
streamwise velocity, density, and total enthalpy with a 
coupled block ADI technique and iterate to determine pc. 
Scalar ADI is then used to find the potential <p. Finally, a 
coupled block ADI scheme is used to find \f/ and cov. Anderson 
[114] solves a fully coupled system for primary velocity, <p, \p, 
o>s,p, and total enthalpy. Point SOR is used at present with 6 
x 6 block inversion at each point. 

Application of Methods. The methods of this section have 
been applied to a variety of flows. Patankar and Spalding 
[108] have analyzed developing laminar flow in a square duct 
with a moving wall [108] and in a round turning duct [116]. 
Briley [109] calculated the developing laminar flow in rec
tangular ducts and included the effects of transverse 
buoyancy. The method of Ghia et al. [110] has been applied to 
developing laminar flow in straight ducts of polar cross-
section [110] and to turning ducts of rectangular cross-section 
[117]. Roberts and Forester [111] computed the turbulent 
flow in a rectangular-to-round diffusing transition duct. The 
method of Briley and McDonald [112] has been used for 
laminar flows in a turning duct similar to a turbine blade 
passage [112] and for turbulent flow in a rectangular turning 
duct [118]. Finally, Anderson [113] has computed several 2D 
turbulent flows in axisymmetric ducts with curved walls, and 
Anderson and Hankins [114] have applied their 3D method to 
the hot turbulent flow in a turbofan forced mixer nozzle. 

To illustrate the capability of these methods we present 
results obtained by Kreskovsky, Briley, and McDonald [118] 
for turbulent flow in a rectangular duct with a 90 deg bend. 
Figures 13 and 14 show computed primary and radial velocity 
profiles, for a cross-section 77.5 deg around the bend, 
compared with the LDV measurements of Taylor et al. [119]. 
Note the very large radial velocity near the suction side of the 
channel. 

Finally, we note that Baker and Orzechowski [120] have 
developed a finite element parabolic method. Like the 
methods of Briley and Ghia et al., it solves 2D elliptic 
equations for <p and p. Like that of Anderson it uses the small 
transverse velocity assumption to parabolize the system. 

Partially Parabolic Methods 

Satisfaction of Local Continuity. Three of the four 
methods considered in this section are similar to fully 
parabolic methods. To satisfy local continuity, both Pratap 
and Spalding [121] and Moore and Moore [122] employ 
approximate velocity-pressure correction relations and adjust 
these variables at each cross-section in the same manner as 
Patankar and Spalding. In successive passes, as the pressure 
field is refined, these corrections should approach zero. 
Chilukuri and Pletcher [123] correct the local velocity field 
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Fig. 15 Calculated and measured wall static pressure on suction, 
pressure, and end wall surfaces of Stanitz elbow—after Moore [127] 

through a potential <p in a manner similar to that of Briley 
[109] and Ghia [110]. <p should also approach zero in suc
cessive passes. Dodge [124] splits the velocity into viscous and 
potential parts U and V<p. U is obtained by marching the 
momentum equations and ip is updated after each full sweep 
by solving a three-dimensional elliptic equation obtained from 
continuity. 

Elliptic Pressure Update. The technique for updating the 
elliptic pressure field after each march is the distinguishing 
feature of these methods. Pratap and Spalding [121] use the 
pressure field obtained from the continuity corrections during 
the march. An ad hoc means of distributing these corrections 
upstream is mentioned in the paper but not discussed. Moore 
and Moore [122] use an elliptic pressure correction equation 
obtained from an approximation to the divergence of the 
momentum equations. The corrections approach zero after 
many marching passes through the field. Chilukuri and 
Pletcher [123] use the pressure Poisson equation obtained 
from the divergence of the full momentum equations. Dodge 
[124, 125] introduces an approximate relation between 
pressure and the potential <p. Once the 3D elliptic equation is 
solved for <p, the pressure is obtained from this relation. 

Approximation by Algebraic System. Finite difference 
techniques are again used in each method. In the marching 
equations first or second order upwind differences are used in 
the primary flow direction and second order central dif
ferences in the cross-plane. Pratap and Spalding [121] and 
Chilukuri and Pletcher [123] use the staggered grid of 
Patankar and Spalding. The velocity components and the 
pressure are stored at different locations in a grid cell. Moore 
and Moore [122] use a staggered scheme with velocity 
components stored at one set of grid locations and the 
pressure corrections stored at another. Dodge [125] stores all 
variables at common grid locations. He introduces subgrids 
near the walls to resolve the viscous layers. The elliptic 
pressure equations of both Moore and Moore [122] and 
Chilukuri and Pletcher [123] use central differences. The 
global potential equation of Dodge [125] uses the mixed 
upwind-central differencing of reference [18]. 

Solution of Algebraic System. To solve these algebraic 

PRESSURE 
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MID-SPAN 
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SIDE 

Fig. 16 Calculated and measured total pressure loss contours at exit 
of Stanitz eibow—after Moore [127] 

systems ADI techniques are used in all methods to obtain the 
velocity components from the momentum equations during 
the march. Since Chilukuri and Pletcher [123] solve 2D 
problems, they perform a tridiagonal matrix inversion in only 
one direction. Pratap and Spalding [121] and Moore and 
Moore [122] use ADI to solve the pressure correction 
equations at each cross-plane. Only the Moore's, however, 
iterate with the momentum equations until the pressure 
corrections are acceptably small. Both Moore and Moore 
[122] and Chilukuri and Pletcher [123] use point relaxation 
procedures to solve the elliptic pressure equations. The 
Moores omit points in the near wall region of the boundary 
layer. Dodge [124, 125] obtains separate marching solutions 
on each of his near wall subgrids and couples these to the 
interior marching solution at their common boundaries. The 
global potential equation for ip is solved by the transonic 
relaxation technique of reference [18], with the near wall 
subgrid points omitted. 

Application of Methods. The partially parabolic methods 
have been applied to a somewhat broader range of flows than 
those of the previous section. Pratap and Spalding [121] have 
analyzed 3D turbulent flow in rectangular turning ducts [126]. 
Moore and Moore have computed 3D turbulent flow in an 
accelerating rectangular elbow [127] and two centrifugal 
impellers [128, 129]. Chilukuri and Pletcher [123] computed 
2D laminar flow in the inlet of a straight channel over a broad 
range of Reynolds numbers. Dodge [125] has calculated 3D 
turbulent flow in a rectangular diffuser and a low aspect ratio 
turbine stator. We show results from two of these com
putations as examples of the state-of-the-art. 

Stanitz et al. [130] measured the turbulent flow in an ac
celerating rectangular elbow designed by means of potential 
flow theory. Moore and Moore [127] computed this flow for 
cases with low exit Mach numbers in which spoilers were used 
to thicken the incoming endwall boundary layers. Figure 15 
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Fig. 17 Calculated and measured static pressures for turbine stator 
hub section—after Dodge [125] 
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Fig. 18 Calculated and measured static pressures for turbine stator 
tip section—after Dodge [125] 

shows computed and measured wall static pressure on four 
cross sections located upstream, inside, and downstream of 
the bend. Figure 16 shows computed and measured total 
pressure loss contours at the exit plane downstream of the 
bend. 

Dodge [125] has computed 3D turbulent flow through a 
highly-loaded low-solidity high-aspect-ratio turbine stator. 
His results are compared to the measurements of Waterman 
[131]. Figures 17 and 18 show computed and measured static 
pressures for the hub and tip blade sections, respectively. 

Elliptic Methods 

All methods in this category are capable of computing 
separated flows. Those which solve the compressible 
equations in conservation-law form also have shock-capturing 
capability. This is not generally available in the parabolic 
methods. In the absence of separation or shock waves, the 

elliptic methods may or may not be more accurate than the 
parabolic ones. If the elliptic method requires locally first-
order upwind differencing for stability or a coarse grid 
because of storage limitations, it may suffer in comparison. 
Most of the methods now in use for internal flows are 
adaptions of techniques discussed here. However, other 
methods, especially those now under development for ex
ternal aerodynamic applications, will undoubtedly be adapted 
for internal flows in the near future. 

Methods for Steady Equations. A popular method in
troduced by Caretto et al. [132] is based on that of Patankar 
and Spalding [109]. The method uses the so-called SIMPLE 
algorithm for Semi Implicit Method for Pressure Linked 
Equations. The steady momentum equations, with an 
assumed pressure field, are solved for provisional values of 
the velocities. An approximate velocity-pressure correction 
relation is then combined with continuity to give a 3D 
equation for pressure. The corrected pressure field, un-
derrelaxed for stability, is substituted into the momentum 
equations to continue the process. Many variants of this 
method have been studied by Raithby and Schneider [133]. 
They found that reintroduction of the time derivatives into the 
momentum equations, with implicit time differencing and a 
local time step proportional to volume, increased the con
vergence rate of the algorithm. 

A different procedure has been used by Walitt et al. [134]. 
The 3D steady equations are transformed to a 2D unsteady 
system by treating one direction as time-like and evaluating 
derivatives in this direction from a previous solution. The 
equations are solved by marching in the time-like direction. 
After one sweep, the time-like direction is switched and the 
equations are marched in this new direction. Since an explicit 
procedure is used on each cross-plane, very small marching 
steps are required to assure stability. This method has been 
applied to a centrifugal impeller [134] and to flow in a 
supersonic compressor cascade with splitter vanes [135]. 

Methods for Unsteady Equations. The methods for the 
unsteady viscous equations are closely related to explicit and 
implicit time marching methods for the Euler equations. In an 
explicit technique all spatial derivatives are evaluated at a 
previous time. The solution procedure is unchanged by the 
addition of viscous terms. The boundary conditions on the 
velocity are changed to enforce no-slip at solid walls. The 
close mesh spacing, necessary to resolve the boundary layers, 
imposes severe time step restrictions to maintain numerical 
stability (CFL limit). Bosman and Highton [136] have 
developed an explicit viscous method closely related to their 
Euler method [79]. The application was to 3D subsonic flow 
in rotating machinery. Shang et al. [137] have implemented a 
3D version of MacCormack's explicit predictor-corrector 
scheme [71] on a vector computer. The application here was to 
supersonic shocked flow in a rectangular wind tunnel. 
Spradley et al. [38] have also implemented a 3D explicit 
method on a vector computer. The time updating is similar to 
the MacCormack scheme, but the spatial discretization used 
the general interpolants method (GIM), [139], The ap
plication was to supersonic flow in an exhaust nozzle. 

In an implicit technique, the nonlinear spatial derivatives 
are linearized about the previous time, and backward dif
ferencing is used on the time derivative. The resulting linear 
system is modified by the addition of the viscous terms. 
However, for central differencing of both inviscid and viscous 
terms, the matrix structure remains the same as for the Euler 
equations. These implicit techniques permit high resolution of 
the viscous layers without severe time-step restrictions. Briley 
and McDonald [92, 93] and Beam and Warming [94] have 
developed similar implicit techniques which were described 
earlier. Briley and McDonald have concentrated on viscous 
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Fig. 19 Calculated and measured profiles at quarter-span and mid-
span around curved rectangular duct—after Humphrey [142] 

flows from the outset. Steger [96] has implemented the Beam 
and Warming procedure in a 2D curvilinear-coordinate, 
viscous code, which is applicable to a broad range of flow 
conditions including those in turbomachinery. In this "thin 
layer" approximation, Steger drops the streamwise viscous 
diffusion terms. 

Ghia et al. [140] have developed a semi-elliptic implicit 
method for 2D incompressible flow. They first present a fully 
elliptic method that solves the complete momentum equations 
together with a Poisson equation for the pressure. Continuity 
is enforced by driving one of the source terms in the Poisson 
equation to zero in the manner of Harlow and Welch [115]. 
The semi-elliptic method is obtained by dropping the 
streamwise viscous diffusion terms. This permits a simpler 
solution procedure for the momentum equations. 

Approximation by Algebraic System. All but one of the 
elliptic methods use finite difference techniques to ap
proximate the differential equations by an algebraic system. 
Spradley et al. [138] use the GIM formulation which is similar 
to the finite volume approaches discussed earlier. The 
dependent variables are represented by interpolating func
tions over the interior of local mesh volumes, and an algebraic 
system is obtained from weighted integrals of the differential 
equation over each mesh volume. Only Caretto et al. [132] use 
the staggered grid of Patankar and Spalding [108]. Bosman 
and Highton [136] employ the staggered arrangement used in 
their Euler method [79]. All the other methods store the 
dependent variables at common grid locations. The hybrid 
central-upwind differencing used by Patankar and Spalding 
has also been used by Caretto et al. [132] and Briley and 
McDonald [93]. Ghia et al. [140] have used upwind dif
ferencing of the streamwise convective term everywhere in the 
flow field. 

Solution of Algebraic System. The algebraic solution 
techniques have been discussed earlier, either for the Euler 
methods or the parabolic methods. The explicit time marching 
procedures as well as the explicit spatial marching method of 
Walitt et al. [134] use local update schemes somewhat akin to 
point Jacobi relaxation. Values at the new time depend only 
on a few values at the previous time. This is a slowly conT 

verging process, but it is easily coded and vectorized. All the 
implicit time marching procedures as well as the steady 
method of Caretto et al. [132] use ADI techniques to solve the 
momentum equations. These techniques can be fast, 

Fig. 20 Computed and measured axial velocity profiles along sym
metry plane of curved square duct—after Buggeln [144] 
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Fig. 21 Computed and measured radial flow velocity profiles after 
77.5 deg turning in circular arc square duct—after Buggeln [144] 

especially if the time-step is permitted to vary both in time and 
space, see e.g. McDonald and Briley [141]. Finally, for 
completeness, we note that the elliptic pressure equation has 
been solved by ADI, Caretto et al. [132], and by point SOR, 
Ghiaetal. [140]. 

Application of Elliptic Methods. To illustrate the state-of-
the-art for elliptic methods in internal viscous flows, we 
present results from three of the analyses discussed above. 
The actual range of applications of the methods is too broad 
to be covered here. 

Humphrey et al. [142] have computed laminar flow in a 
square turning duct using a method based on that of Caretto 
et al. [132]. Results were compared with LDV measurements 
by the same authors. Figure 19 compares calculated and 
measured (circles) streamwise velocity profiles at quarter (up 
from end wall) span and mid-span for several cross-sections 
progressing from five hydraulic diameters upstream to 
completion of the 90 deg bend. The disagreement at the last 
three stations may be due to inadequate grid resolution (10 x 
15) over the cross-section. A similar computation and 
comparison with data for turbulent flow in the same duct is 
presented in reference [143]. 

Buggeln et al. [144] have used the method of Briley and 
McDonald [93] to compute both laminar and turbulent flow 
in curved ducts, channels and pipes. We present comparisons 
with the data of Taylor et al. [119] for the same turbulent flow 
case computed by Kreskovsky et al. [118] with the parabolic 
method of [112]. Figure 20 shows comparisons for streamwise 
velocity profiles at the symmetry plane for several stations 
upstream of, around, and downstream of the bend. Figure 21 
shows comparisons for several radial velocity profiles at the 
77.5 deg station. Comparing Fig. 21 with Fig. 14 shows 
considerable agreement between the two methods. 

Finaly, Ghia et al. [140] have computed 2D laminar flow in 
a channel with a large constriction using both their fully 
elliptic and semi-elliptic methods. Figure 22 shows computed 
streamline contours for a case with a large separation zone on 
the downstream side of the constriction. The upper part of the 
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Fig. 22 Computed streamline contours for channel with constriction 
Re = 100—after Ghia [140] 
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Fig. 23 Comparison of semi-elliptic and elliptic computations for wall 
shear—after Ghia [140] 

figure shows an enlargement of the central portion of the full 
channel shown below. Figure 23 shows computed results of 
both methods for wall shear. The agreement between methods 
is excellent in the separated region on the lower wall. 

In general these methods all perform quite well. The 
disagreement with experiment where it exists is probably due 
to inadequate grid resolution. However, much work remains 
to be done to determine the numerical accuracy of all these 
methods. 

Turbulence Modeling 
The recently completed AFOSR-HTTM-Stanford Con

ference on Complex Turbulent Flows was organized for the 
purpose of providing an assessment of the state-of-the-art in 
turbulent flow prediction, especially that of turbulence 
modeling. A wide range of test flows with reliable ex
perimental data was assembled and computational groups 
were invited to submit computed results for these flows to the 
Conference. The comparisons of these results with the data 
together with the findings of the Evaluation Committee will 
be presented in reference [8]. 

The current focus in turbulent modeling seems to have 
shifted from the one and two equation eddy viscosity models 
of a few years ago to methods which predict the Reynolds 
stresses themselves. Many results obtained with these models 
were presented at the Conference. However, while the 
promise of these models is considerable, at the present they 
show little or no advantage over the simpler treatments. This 
is especially true for separated flows. 

The results of any turbulent flow prediction depend at least 
as much on the numerical technique as they do on the tur
bulence model. For most of the flows included in the con
ference, it was not possible to separate the limitations of the 
numerics from those of the turbulence models. Grid 
refinement studies were presented in only a few cases and 
many of these were inadequate. 

In many internal flows, and especially in those through 
turbomachinery components, as a result of the rapid turning 
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of the fluid, the evolution of the flow is dominated by the 
balance between strong pressure gradients and centrifugal 
forces. Turbulent mixing, though present, plays a lesser role. 
Indeed the development of complex secondary flows in these 
components, while dependent on the presence of shear layers 
due to upstream viscous effects, is an essentialy inviscid 
phenomenon. Hence, if one can develop a sufficiently ac
curate and efficient numerical technique for solving the 
partial differential equations of fluid dynamics, good 
predictions of such flows should be possible even with a 
realtively simple turbulence model. This view is supported by 
the observations of Humphrey et al. [143] in their studies of 
turbulent flow in turning ducts. 

Concluding Remarks 
The current status of potential flow methods for tur

bomachinery is quite advanced. A large number of codes have 
been developed for analyzing two-dimensional transonic flow 
with shocks on blade-to-blade surfaces. While an order of 
magnitude speed up in computing time may be possible with 
the latest procedures, many of these codes run fast enough for 
routine use by designers. In addition, at least three codes can 
compute three-dimensional potential flow in rotors. One of 
these has demonstrated transonic shock-capturing ability. 
Most of the stream function codes for turbomachinery ap
plications are based on classical relaxation or matrix inversion 
techniques. They solve for subcritical flow on blade-to-blade 
or hub-to-shroud surfaces. Recently, however, a transonic 
stream function method has been developed and one ap
plication to a cascade is under development. In the case of the 
primitive variable Euler equations a larger number of codes 
have been developed for turbomachinery applications. Most 
of these solve for two-dimensional, blade-to-blade flow with 
shocks. There are, in addition, at least three codes which 
analyze three-dimensional shocked flows in rotors. With few 
exceptions, however, these codes utilize older long-running 
numerical algorithms. Since solution of the Euler equations is 
now one of the most active areas of research in computational 
fluid mechanics and since a number of promising new 
methods are under development, this situation should be 
much improved in a few years. 

The state-of-the-art for viscous methods is much less 
developed than for inviscid ones. A few single-pass parabolic 
marching codes have been developed for three-dimensional 
flows in ducts and turning passages. These methods are 
relatively fast and fairly accurate in the absence of strong 
secondary flows. When strong secondary flows are present at 
high Reynolds numbers, either excessive grid or implicit 
numerical dissipation may be needed to maintain stability in 
inviscid regions of the flow. A few multi-pass partially 
parabolic codes have been developed for three-dimensional 
flows in turning passages and at least two of these have been 
applied to turbomachinery rotors. In these methods the 
pressure field is treated as elliptic and is updated as the 
computation proceeds. Much work remains to be done to 
speed up these methods and to extend the pressure correction 
techniques into the transonic regime. A number of codes have 
been developed which solve the full time-averaged Navier-
Stokes equations in either two or three dimensions, in both 
ducts and turbomachinery, for both subsonic and transonic 
flow. The comments on accuracy and computational ef
ficiency which were made for the Euler equation methods are 
equally valid here except that the computer times are even 
longer. It is likely that the status of Navier-Stokes codes will 
be improved substantially with the advent of new improved 
Euler solvers since most regions of viscous flows are 
dominated by inviscid effects. Finally, although it is not true 
that turbulence models are becoming much more accurate, in 
many flows in turning passages and turbomachinery the 
velocity field is determined primarily by the balance between 
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centrifugal forces and pressure gradients and the effects of 
turbulence are relatively weak. Hence, if one has a sufficiently 
accurate numerical procedure, one can hope to adequately 
compute such flows even with a relativley simple turbulence 
model. 
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An Investigation of High 
Performance, Short Thrust 
Augmenting Ejectors 
The design of air-to-air, thrust augmenting ejectors having short curved wall dif
fuses utilizing boundary layer control is discussed. The design is achieved by an 
inverse method which uses the vorticity at the diffuser inlet as a flow parameter in 
the analysis. Three diffusers having ejector length-to-mixing chamber diameter 
ratios of approximately 6:1 and mixing chamber inlet area-to-primary nozzle area 
ratios of 20:1 and 40:1 were designed and tested. A new high level of performance 
was analytically predicted and achieved experimentally. Comparisons between 
predicted and observed performances, velocity distributions and pressure 
distributions are presented. 

Introduction 

The use of a jet ejector for augmenting thrust offers 
solution to some critical problem areas in the design of 
V/STOL propulsion systems. The benefit of using ejectors, 
however, is seriously offset by its complexities. The criteria 
for using such a thrust system are: (a) it has to be short 
enough to satisfy space-limitations, and (Z?) it must provide 
high thrust augmentation to yield a substantial net gain in a 
practical application. 

There exists a large body of literature on ejectors for thrust 
augmentation. Among the early efforts are those of Von 
Karman [1] for theoretical treatment and the experimental 
studies of Jacobs and Shoemaker [2]. In the recent open 
literature Fabri and Siestrunck [3] and Addy [4] reported 
work on supersonic ejectors, Bevilaqua [5, 6] treated en
trapment mechanisms and mixing, and Quinn discussed the 
effects of jet temperature [7] and aeroacoustic interaction [8]. 
More recently, J. L. Porter and R. A. Squyers [9] published 
an overview on ejector theory and performance. A com
prehensive listing of 1619 references was presented as volume 
II of their report. In the following discussion, attention will be 
directed only to previous work related to the current in
vestigation. 

Previous exploratory work by the first author [10] had 
indicated a surprisingly high thrust augmentation to be 
possible by the use of a highly effective, short, curved-wall 
diffuser incorporating boundary layer control. A diffuser of 
this type will be referred to as a Griffith diffuser [11]. A 
typical Griffith diffuser has a wall velocity distribution 
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exhibiting a high velocity inlet region, slightly accelerating 
flow up to a narrow slot region and a sudden drop in velocity 
taking place across the narrow slot region. Downstream of the 
slot region, there is an exit of the diffuser. The sudden drop of 
the velocity takes place over the slot where boundary layer 
control is applied so that no flow separation takes place. 
Because no adverse pressure gradient is involved along the 
stationary wall of a Griffith diffuser, the potential flow 
approximation has been used successfully in the inverse design 
method for determining the diffuser wall geometry. The 
analytical formulation and the algorithms for that method are 
presented in reference [11] and the references cited in 
reference [11], respectively. 

In the study of reference [10], ejectors having diffusers with 
length-to-diameter ratio (l/D) of 4.9:1 and 6.5:1, and mixing 
chamber inlet area-to-primary nozzle area ratio (X) of 150, 
were tested with steam as the primary flow and ambient air as 
the entrained flow. The experimentally observed mass ratio of 
entrained-to-primary fluid appeared to be several times higher 
than that of conventially designed ejectors. However, lack of 
data concerning X for early studies in the literature precludes 
more precise comparison. The maximum value of thrust 
augmentation ratio <£ achieved in reference [10] was 2.81. This 
did not account for the penalty of boundary layer control and 
was higher than could be expected if air were to be used as the 
primary fluid. Nevertheless, these early results together with 
the compactness of the ejector presented a strong attraction 
for further study of short diffusers employing boundary layer 
control. 

In 1973 Gilbert and Hill [12] published their two-
dimensional ejector analysis and test results. Both com
pressibility and viscosity were accounted for in their analysis. 
The pressure gradient across the flow passage throughout the 
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ejector was neglected. In 1977, Tai [13] of the David W. 
Taylor Naval Ship R&D Center utilized Gilbert and Hill's 
analysis up to the exit of the mixing chamber. Then he im
plemented a diffuser design sub-program based on an 
argument that the boundary layer can withstand a nearly 
infinite pressure gradient for a very short distance without 
separation. Tai referred to his diffuser design criterion as the 
"incipient separation criterion." At the exit of the mixing 
chamber, an infinite pressure gradient is imposed. After that, 
the pressure gradient along the diffuser is so adjusted to 
satisfy an incipient separation criterion by keeping the wall 
frictional velocity between 1 to 6 ft/s, according to Tai. Note 
that larger values lead to longer diffusers which are less 
desirable. The diffuser geometry is determined through an 
iterative procedure of adjusting the local pressure gradient to 
satisfy this range of wall frictional velocity. The boundary 
condition on the exit of the ejector is satisfied by terminating 
the computation when the local static pressure reaches the 
ambient value. 

Tai, op. cit., has shown that an optimum thrust 
augmentation ratio of 1.42:1 may be reached with the diffuser 
section of the ejector designed with the "incipient stall 
criterion" and for an overall LID of 6:1 and X = 19. The 
obvious question is whether or not the use of Griffith-type 
diffuser sections would significantly improve ejector per
formance. In 1980, work by the authors of this paper was 
resumed under sponsorship of the U.S. Navy, David Taylor 
Naval Ship Research Development Center (DTNSRDC). 
Specific goals were (0 to verify the observed ejector per
formance of reference [10], and (//) to develop a design 
procedure for short, efficient ejectors. 

In the Ejector Design-Inverse Method presented in the 
following section, owing to the fact that the Griffith diffuser 
wall curvature is large, particularly around the suction slot, 
Gilbert and Hill's program can not be used in analyzing the 
flow within the Griffith diffuser. On the other hand, because 
of no deceleration along the solid wall portion of the diffuser, 
the inviscid flow approximation should be acceptable. 
Segment-wide the Bernoulli equation is applicable along each 
streamline where dissipation is not severe. This is the case 
both in the nozzle and along the diffuser wall. The design 
method outlined in the next section is somewhat cumbersome. 
A more elegant analytical method, however, would require 
the inverse solution of the Navier-Stokes equations. Such a 
solution is not currently available. 

Ejector Design—Inverse Method 
Figure 1 shows the major steps in analyzing an axisym-

metrical ejector with a short, curved-wall diffuser. The mixing 
chamber is shaped like a circular pipe and may have a con
traction toward the end of the mixing chamber. To initiate the 
analysis, the area ratio of the primary nozzle to the mixing 
chamber inlet and the ratio of the mixing chamber length to 

Step I Prescribe C value of the 
mixing chamber contraction 

2 
C tanh | 5 <cj) in,mixing chamber <!>} 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

"DTNSRDC Program" 
Computation up to 

mixing chamber exit 

V 
Average temperature and 
velocity and pressure 
at mixing chamber exit 

V 
Compute diffuser area ratio AR. 

Go to "Inverse Design Progran" 
and "Rotational Flow Calculations" 

V 
Calculate critical velocity U c 

and suction flow rate 

V 
Calculate thrust augmentation 

ratio $2 

Fig. 1 Block-diagram showing the major steps in ejector analysis 

its diameter (llD) are specified. The diffuser length usually is 
restricted to about one exit diameter of the diffuser. In ad
dition, the static pressure at the mixing chamber inlet and 
stagnation pressure of the primary air are also specified. Both 
the entrained secondary flow from the stagnant ambient and 
the primary flow within the nozzle are isentropic up to the 
mixing chamber inlet. Analytically, specification of the static 
pressure at the mixing chamber inlet in fact implies that the 
ratio of the secondary mass flow to the primary mass flow is 
defined. Starting from the inlet, there are heat and 
momentum transfer between the primary flow and the en
trained secondary flow. 

The first step is to specify the mixing chamber geometry by 
a selected dimensional value of C in the radius distribution 
equation of Fig. 1 along with other mixing chamber geometric 
parameters. In step two, the computer program originally 
devised by Gilbert and Hill [12] is used to compute velocity 
and temperature profiles and pressure values up to the exit of 
the mixing chamber. Governing equations for the flow are of 
the boundary layer type; therefore pressure variations only 
exist along the flow direction and not across the streamlines. 

In the third step, the mass-averaged flow velocity and 
temperature are computed. These are employed in the fourth 
step, which uses one-dimensional, compressible isentropic 
flow to determine the necessary area ratio to yield the diffuser 
exit pressure at the atmospheric level (or the ambient level). 

A = 
AR = 

C = 
D = 

f.s. = 

I = 
UD = 

L = 
in = 
P = 
r = 
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For other computations in this step, inviscid incompressible 
axisymmetric flow is assumed within the diffuser. As long as 
the flow along the solid wall is maintained without 
deceleration, the inviscid flow approximation can be justified. 
The Inverse design Program reported by Nelson and Yang 
[14] is used to obtain the geometry of the short, curved-wall 
diffuser for a specified area ratio at the length approximately 
equal to one exit diameter. This length specification is 
somewhat arbitrary, yet experience suggests that it should not 
be difficult to achieve. 

Immediately after the determination of the diffuser 
geometry, a computer program based on a rotational flow 
analysis is used in step 4 to examine the velocity distribution 
along the diffuser wall. As an objective, there should be no 
deceleration along the solid diffuser wall. If necessary, the 
input for the Inverse Design Program is revised to generate a 
new diffuser geometry. This process is repeated until there is 
no indicated deceleration along the diffuser wall. It is 
sometimes necessary to revise the analysis from the very first 
step where the mixing chamber inlet pressure is specified. An 
increase of the static pressure at the inlet implies a reduction 
in mass ratio and therefore a reduction in diffuser area ratio. 
Usually this revision can eliminate the problem of 
deceleration along the solid wall. For a configuration with no 
deceleration, no flow separation will take place. It is 
recommended that the velocity from the diffuser inlet to the 
suction slot be kept slightly accelerated. 

The fifth step is to estimate the amount of fluid to be 
removed for boundary layer control. For this purpose it is 
necessary to know the boundary layer profile immediately 
upstream of the suction slot. It is reasonable to assume that 
this profile is the same as that at the exit of the mixing 
chamber, and by using that profile, the critical velocity 
determined by Taylor's criterion [15] can be calculated and 
the rate of boundary layer removal can then be determined. 

In step 6, the modified thrust augmentation ratio 4>i is 
computed. The consideration of the mass flow of primary 
fluid used in auxiliary ejector, which provides the necessary 
boundary layer control, and the thrust contribution from the 
discharge of the boundary layer removal are included in the 
definition of 4>2 viz, 

1 
(\i^pV2dA+\j , pV^dAj (1) 

(mV)p + (mV)p> 

But due to small numerical contribution of the second 
integral term, this equation was approximated by 

•((mV)e> + \ PV2dA\ (l.o) 
(mV)p + (mV)y 

In step 3, the velocity profile across the mixing chamber exit 
was computed, and in step 4 an inviscid rotational flow 
analysis was approximated. Therefore, the momentum term 
represented by the integral in equation (l.o) can be readily 
determined. One-dimensional compressible flow analysis, 
using specified primary and auxiliary mass flow rates together 
with the mass ratio in the auxiliary ejector, were used to 
compute the non-integral momentum terms. 

In the present study, an ejector was first fabricated based 
on the design using the approximation of constant vorticity in 
the diffuser for rotational flow calculation. It had a diffuser 
area ratio of 2.2:1, and it was found that this ejector could not 
be operated without flow separation. A refined analytical 
procedure which requires no constant vorticity approximation 
was subsequently devised. Results of the refined anlaysis 
indicated that the flow reversal within the first ejector was 
inevitable regardless of the amount of flow removal for 
boundary layer control. We call this flow phenomenon 
"inviscid flow reversal," a consequence of the continuity 
equation and vorticity equation requirements. The allowable 
area ratio of the diffuser without flow reversal obtained using 
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Fig. 4 Schematic of test setup 

refined analytical procedures is smaller than that resulting 
from a constant vorticity analysis. An outline of the "refined 
rotational flow calculation" is presented in the appendix of 
reference [16]. 

Experimental Investigation 

A. Test Models. Figure 2 shows an ejector which has a X 
value of 40, mixing chamber ratio (IID) of 4.82:1 and diffuser 
area ratio of 1.33:1. The diffuser of this ejector can be 
changed to an area ratio of 1.46:1 by changing the curved-
wall inserts to thus form a second ejector but having the same 
mixing chamber and X value. 

A third ejector wth a X value of 20, mixing chamber length-
to-diameter ratio (l/D) of 4.75:1 and a diffuser area ratio of 
1.26:1 is shown as Fig. 3. Systematical tests were conducted to 
determine the effective thrust augmentation ratio 02 for these 
three ejectors (diffuser area ratios 1.26:1, 1.33:1 and 1.46:1). 
Two types of primary nozzles, single-jet and multiple-jet, 
were used. These were convergent nozzles located so that the 
primary nozzle exit plane coincided with the mixing chamber 
inlet plane. 

The auxiliary ejector used for boundary layer removal in 
the ejectors studied is of conventional design and the primary 
nozzle size was optimized for the operational conditions of 
the main ejectors. 

B. Test Facility. Figure 4 shows a schematic of the test 
setup. The compressed air used as the primary fluid for the 
ejector and for the auxiliary ejector was supplied by an oil-less 
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Ingersoll-Rand type ESH compressor which has a maximum 
capacity of 204 ACFM at 90 psig. The compressed air was 
cooled by using an aftercooler and then routed to a 3-ft 
diameter, 8-ft tall surge tank. From there the air was delivered 
through a 2-in. pipeline to the laboratory. A gate valve was 
used to control the air flow into the test loop. Either a Fisher 
model 95L (10-30 psig) or model 95H (25-75 psig) regulator 
was used to regulate the pressure of the primary flow for the 
ejector nozzle, depending upon required test pressure range. 
A Cox Turbine Flowmeter was installed downstream of the 
pressure regulator and an electrical resistance heater, rated 5.6 
Kw and controlled by a voltage regulator, was placed 
downstream of the flowmeter. A metal flexible hose was used 
to connect the heater and the converging nozzle plenum. This 
allowed easy alignment during installation. In the other 
branch of the test loop, compressed air was supplied to a 
converging nozzle of the auxiliary ejector. A C. A. Norgren 
model R-17-800 regulator was used upstream of a Meriam 
laminar flow element. The latter was used to meter the 
primary flow rate of the auxiliary ejector. The primary nozzle 
and the mixing chamber of the test ejector were mounted on 
an alignment device to ensure that the centerlines of the 
primary nozzle and mixing chamber were precisely aligned. A 
set of eight sliding ball bearings was used to allow the mixing 
chamber to move freely in the axial direction. A force 
measuring device utilizing a set of strain gages was mounted 
rigidly on the mixing chamber to provide a direct 
measurement of the thrust force on the mixing chamber. The 
mixing chamber and the diffuser were assembled together as 
one integral part which moved freely relative to the alignment 
rig. The alignment rig was mounted firmly on a stationary 
supporting stand. The curved wall diffuser insert downstream 
of the suction slot could be adjusted relative to the upstream 
insert to vary the slot size or the gap between the inserts. Four 
suction ports were provided, and a featherweight flexible hose 
was used as the suction mainfold which led to the inlet of the 
auxiliary ejector. The primary jet, mixing chamber and the 
diffuser of the auxiliary ejector were all firmly mounted to the 
stationary stand. The featherweight flexible hose minimized 
errors in the thrust force measurement on the mixing chamber 
of the ejector. Conventional instruments and well-accepted 
laboratory procedures were employed in measurements of 
pressure, temperature, momentum, mass flow rates and 
force. 

C. Test Conditions. Three ejectors (two with X equal to 40 
and diffuser area ratios of 1.46:1 and 1.33:1 and one with X 
equal to 20 and diffuser area ratio of 1.26:1) were successfully 
operated, mostly without flow separation in their diffuser 
sections. These ejectors were systematically tested. The 
plenum pressure of each ejector was set at five levels 10, 17.4, 
23.2, 29.0, and 35.5 psig, 10 psig being the design value. The 
ambient static and also the stagnation pressure were ap
proximately 14.5 psia which resulted in pressure ratios of the 
stagnation pressures to ambient pressure (Po/P„,„b) of 1.67:1, 
2.21:1, 2.61:1, 3.02:1 and 3.47:1. The plenum pressure of the 
primary flow of the auxiliary ejector was selected at five 
levels, 7.5, 10, 12.5, 15, and 17.5 psig, for each of the 
following ejector primary flow plenum pressures, 10, 17.5, 
and 23.2 psig. The auxiliary plenum pressure was selected at 
four levels, 12.5, 15, 17.5, and 20 psig at each primary flow 
plenum pressure of 29.0 and 35.5 psig. The temperature of the 
primary air of the ejector was elevated to 164°F by passing the 
air through a 6-in. pipe containing suspended electrical 
heating elements. The heated air expanded through a con
verging nozzle to reach a static temperature of about 80°F, 
approximately the static temperature of the entrained 
secondary fluid. 

The gap size between two curved-wall sections of the dif
fuser was adjusted to yield a maximum vacuum of the first 
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mixing chamber static pressure reading. This resulted in a gap 
size ranging between 1/4 in. and 3/16 in. for all the tested 
ejectors. 

D. Test Procedures. Ejector components test rigs were 
designed to obtain flow velocity profiles at the mixing 
chamber exit and to obtain the performance of the auxiliary 
ejector. These rigs were designed and operated at a simulated 
diffuser condition of no flow separation in the diffuser. Using 
the rotational flow analysis, a diffuser was designed with an 
area ratio of 1.64:1. This area ratio was too large because the 
computed vorticity used in rotational flow analysis was lower 
than the value derived from measured velocity at low pressure 
ratios of the stagnation pressures. Until the diffuser area ratio 
was reduced to 1.46:1, flow separation within the diffuser 
persisted. A considerable effort was devoted to eliminating 
flow separation in the short, curved-wall diffuser, and this 
was achieved largely on the ejector performance test stand 
rather than using components testing. 

The mixing chamber length for Xof 40 was initially 15.5 in. 
This was reduced to 13.5 in. on the ejector performance test 
stand. The first mixing chamber wall static pressure tap was 
used to monitor the flow rate of the entrained secondary flow, 
and tufts attached at the diffuser exit were used as indicators 
for flow attachment. In this length reduction process, no 
secondary flow reduction was detected in the first one inch of 
trimming. A reduction of 0.2 in water was observed in the 
wall static pressure reading when the length was reduced to 
13.5 in. No flow separation was indicated by tufts inside the 
diffuser. These improvements were carried out at a plenum 
pressure of 10 psig for the primary flow of the ejector. 

For each test run the plenum pressure levels for the primary 
and auxiliary ejectors were adjusted to the pre-selected values 
via pressure regulators and monitored by manometers. The 
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plenum temperature of the primary air of the main ejector 
was regulated to yield a pre-selected temperature by adjusting 
the voltage regulator of the electrical heater. A miniature Kiel-
probe was used to traverse the auxiliary ejector exit. A Keil-
probe and a static pressure probe were used to traverse the 
main ejector exit. A 10-point method was used for traversing 
the entire diameter yielding 20 stations for both stagnation 
and static pressure readings. These pressure readings and the 
wall pressure readings of the mixing chambers and the dif
fuses were recorded either via (/') pressure transducer-
scanning valve to a tele-type arrangement or (if) pressure 
transducer-scanning valve to an Apple computer for data 
storing and data reduction. Strain gage output was read as a 
direct measurement of the force on the mixing chamber. 
Normally it required 30-40 minutes to complete one test run. 
Care was exercised to ensure that the pressure levels of the 
primary flows, the temperature of the heated air and the 
strain gage output reading did not "drift" during the test 
period. Therefore, those readings were repeated at the end of 
each test run. 

E. Test Results. The most important results of this in
vestigation pertain to the optimization of the modified thrust 
augmentation ratio </>2

 a s a function of the pressure ratio, 
P0/Panlb. These results are summarized in Fig. 5. A discrete 
point on this figure represents an experimentally obtained 
maximum 4>2 value for a given pressure ratio. Each 4>2 value 
was optimized by varying the flow to the auxiliary ejector. 
Using the experimentally measured values of f.s., (MR)aux 

and vorticity o> at the diffuser inlet and the analytical 
procedure outlined in Fig. 1, three performance curves, one 
for each tested ejector, were obtained. Figure 5 shows those 
three curves of predicted <j>2 versus pressure ratio Po/Pal„b. 
The open circles represent the <j> values of the ejectors with 
diffuser removed. These values should serve as base line 
performance to indicate the thrust augmentation gained by 
the use of the diffuser. Good agreement is observed between 
analytically computed and experimentally observed 4>2 values 
over a major part of the P0/Pamb range. 

The thrust augmentation of the. type of ejectors studied in 
this investigation is the thrust force on the mixing chamber. 
The values of this force were obtained from two approaches: 
(1) the difference between the momentum of the ejector at 
diffuser exit and the momentum of the primary nozzle at its 
exit, and (2) the direct force measurement using a strain gage 
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Fig. 7 Typical velocity distributions at the mixing chamber exit, 
computed and measured, Aft = 1.26, X = 20 

arrangement. Figure 6 shows a typical comparison of these 
forces determined from the two different approaches for the 
ejector of AR = 1.26:1 and X = 20. The numbers next to the 
data points denote the test run number listed in Table 1 of 
reference [16]. A large majority of the data points fall on a 
line of 45 degrees, but displaced up to 0.3 lb to indicate higher 
values of thrust force derived from momentum 
measurements. It is believed that the experimental apparatus 
was not totally free to move before the cantilever arm of the 
mixing chamber came into contact with motion stop. There 
appears to be a small but systematic error in the strain gage 
force measurements introduced by the presence of the suction 
manifold of the auxiliary ejector. Allowing for this, the thrust 
forces determined from the two different sources agree well 
for most of the data in the low and medium range of tested 
pressure ratio of P0/Pa,„b- Greater deviations were observed 
at high pressure ranges; this increased deviation could be 
attributed to the fact that the static pressure across the mixing 
chamber inlet may not have been constant as was assumed. 

Whereas the maximum 02 values of the present study are in 
the neighborhood of 1.6, a study reported as reference [9] 
indicates maximum thrust augmentation values ranging from 
1.4 to 2.0. The high value utilized a "hyper-mixing" nozzle 
ejector, whereas the lower value was obtained with a single, 
axisymmetric ejector nozzle comparable to the designs of the 
present study. Their reported <j> value of 1.4 is comparable to 
the computed optimum value reported by Tai [13] and is less 
than the optimum value observed in the present work. 
Recently, Alperin and Wu [17] published an analytical 
prediction of ejector thrust augmentation ratios for both 
subsonic and supersonic, mixed flows. Reference [16] deals 
with the subsonic case. They have shown that for a stationary 
ejector with ideal mixing and no frictional losses, <j> can reach 
a value of 3.5 for a nozzle pressure ratio of 1.67 and a <f> value 
of 2.4 for a nozzle pressure ratio of 3.47. Of course in their 
ideal analysis, length is not a pertinent geometrical parameter. 
This is in contrast to the current study where length is of 
major importance. 

Figure 7 shows a typical set of normalized velocity 
distributions at the diffuser inlet. The distribution shown by 
solid line was obtained by using the computer program of 
reference [12]. Experimentally measured mass ratio MR and 
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Fig. 8 Typical static pressure distributions across the exit of the 
mixing chamber AR = 1.26, X = 20 

pressure ra t io Po/P(„„b w e r e u s e c l a s inputs for this com
putation. This mixing chamber exit is located 4.82 diameters 
downstream from its inlet. The velocity distribution shown by 
discrete points was obtained with a miniature Kiel-probe and 
a static pressure probe. Basic features of a shear flow were 
observed in both profiles. Owing to the sizes of the probes, no 
measurements were taken closer than 1/16 in. from the wall. 
The vorticity values derived from the measured velocity are 
about 10 percent higher than those derived from the computed 
distribution at P0/Pamb = 1-67. Better agreement in vorticity 
values was observed at higher pressure ratios. Fifteen sets of 
velocity distribution were examined for this investigation. In 
static pressure measurements the centerline pressure usually 
was 1.0 to 2.0 in. of water lower than that at the wall. Figure 8 
shows three sets of static pressure distributions across the exit 
of the mixing chamber of the ejector with X = 20. These were 
measured for pressure ratios of 1.67, 2.21 and 2.61. These 
pressure ratios correspond approximately to subsonic, sonic 
and supersonic primary flow within the mixing chamber, 
respectively. 

The velocity measurements at the exit of the mixing 
chamber provided information for correcting the vorticity co 
used in computing the diffuser exit velocity for the rotational 
flow analysis. The velocity measurements also provided an 

2 8 / V o l . 107, MARCH 1985 

°/Pomb Measured Calculated 

,.67 B -j 
2.21 A X=20 
2.61 O J 

/ 

• 

/ A 

/y 
s a / / 
V w 

I 

/ 

/ / A 

y/ 
/ 

A 

ni: 
/ 8 

o o 

in 

V
el

oc
it

y 30
0 

in 

001 

tfV 

o 
8-8 

001 

IO 

\ \ \ 

N0 

\ 
\ 

• ^ b 

\ 
\ V 

1.0 0.6 0.2 0 0.2 0.6 1.0 

Distonce from Centerline, in. 

Fig. 9 Typical velocity distributions at the diffuser exit, computed and 
measured, AR = 1.26, X = 20 

independent source from which the entrained flow rate msl 

was determined. 
Figure 9 shows typical exit velocity distributions for an 

ejector having AR - 1.26:1. The lines represent the velocity 
distribution computed with the rotational flow analysis of 
reference [16]. The features of shear flow are preserved in 
both the computed and the experimentally measured velocity 
distributions. 

The velocity measurements at the diffuser exit provided one 
of the key elements of information for evaluation of thrust 
augmentation ratio 02 , mass flow rate me and mass flow ratio 
MR. The ratio MR is defined as msl/mp and the entrained 
mass flow rate msl was determined from the following 

ms\ =me + msuc - mp 

where 

Independent checks on ms/ were made by using the following 
equation 

msl =mmc-mp 

The values of ms] determined from the above two in
dependent approaches differed by no more than 4 percent. 

Steady-flow prevailed in this ejector over most of the 
operating ranges of P0 and P0iaux, except when P0 was around 
30 psig. In all velocity profiles the measured peak velocities 
fall below computed values. During the tests for the ejector 
having AR = 1.26:1 and X = 20, much more uniform velocity 
distributions were observed both at the exit of the mixing 
chamber and at the exit of the diffuser when the primary 
nozzle plenum pressure was set between a narrow range of 
30-31 psig. Quinn [7, 8] attributes such profiles to 
aeroacoustic interactions. For the other two ejectors tested, 
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Fig. 10 Comparison of diffuser wall pressure distributions, measured 
and computed, AR = 1.26 X = 20 

steady flow prevailed over the entire test ranges of P 0
 ar*d 

' O.aux-

Figure 10 shows the typical measured and computed 
pressure distributions along the mixing chamber wall and the 
diffuser wall for an ejector having AR = 1.26:1. In the 
mixing chamber the computed pressure distribution was 
obtained by using Gilbert and Hill's analysis along with the 
measured inlet static pressure as input. The computed diffuser 
wall pressure distribution was obtained by using measured 
diffuser inlet conditions (or mixing chamber exit conditions) 
together with the rotational flow analysis for wall velocity and 
the Bernoulli equation for corresponding pressure. The wall 
pressure readings throughout the ejectors were below ambient 
pressure. The static pressure at the end of the bell month inlet 
was used as the normalizing factor. The discontinuity of the 
computed pressure distribution at the diffuser inlet is a result 
of the use of experimental pressure data at the mixing 
chamber exit for the diffuser wall velocity computation. 
Plotted on gage pressure readings, the computed pressure is 
significantly lower than the measured pressure. In terms of 
absolute pressure level, however, the difference amounts to 
only 2 to 3 percent of the absolute pressure. Therefore good 
correlation between the experimental and computed velocity 
distributions at both the diffuser and mixing chamber exits is 
not contradicted by the large difference between experimental 
and computed gage pressure distributions along the mixing 
chamber wall. It has been pointed out by Nagamatsu [18] that 
under most of the tested nozzle pressure ratios there were 
"shock bottles" within the mixing chamber which could 
explain why the measured pressure readings are higher than 
the computed values from the analysis of reference [12], 
which assumes that no expansion and shock waves exist in the 
mixing chamber. For further discussion on the mixing of 
subsonic and supersonic jet flow from convergent nozzle with 
the ambient air one should refer to the articles by Love et al. 
[19] and Nagamatsu and Sheer [20]. 

Within the diffuser, favorable pressure gradients were 
prescribed initially to the solid wall portion (upstream and 
downstream of the suction slot) of the diffuser designed with 
the irrotational flow, inverse design program. The rotational 
flow computation also predicted favorable pressure gradients. 
Owing to low diffuser area ratio, attached flows were 
maintained even though experimental data exhibited 
deceleration both upstream and downstream of the suction 
slot. The diffuser was designed for PQ/PUI„I, = 1.67. The 
computed pressure distribution curves along the diffuser walls 
show that the curve for P0/Pamh = 2.21 is above instead of 
below that for Po/P,,,,,/, = 2.61 as the trend indicated in the 
mixing chamber. This reverse trend is caused by using the 

experimentally observed diffuser inlet static pressures as the 
input of the rotational flow computations and no special 
significance should be attached. 

F. Accuracy Statement. The accuracy of the experimental 
value of 4>2 presented in Fig. 5 was analyzed. Based on the 
accuracy of the instruments and the uncertainty of the 
readings, the following maximum errors wre encountered. At 
the ejector exit plane errors of 1 percent in area due to probe 
locations, 0.4 percent in density due to temperature 
measurements, and 0.8 percent in velocity due to pressure 
measurements existed. Similarly at the exit plane of the 
auxiliary ejector, maximum errors of 4 percent in area, 0.4 
percent in density and 2 percent in velocity were assessed. In 
addition, a one percent maximum error in both primary fluid 
mass flow rates for the ejector and the auxiliary ejector, and 1 
and 2 percent maximum errors in their respective jet velocities 
were assessed. Based on these values and the definition of the 
modified thrust augmentation ratio (equation (1)), a 
maximum error of 6.8 percent and a probable error of 4.3 
percent in 02 were estimated. 

Conclusions 

Two important features were brought out in this in
vestigation: 

1. The vorticity at the diffuser inlet was introduced as a 
flow parameter in ejector analysis. 

2. A new level of performance for ejector thrust 
augmentation was established. 

From inviscid rotational flow consideration, a flow reversal 
will take place regardless of the amount of boundary layer 
removal when the diffuser area ratio is too large for the inlet 
vorticity. This inviscid flow reversal is a consequence of flow 
continuity and vorticity requirements. Therefore, for each 
inlet vorticity level there is a maximum value of the diffuser 
area ratio. Beyond this ratio, flow reversal is inevitable 
regardless of the amount of boundary layer removal. This 
feature was demonstrated for the first time both analytically 
and experimentally. 

T. C. Tai has previously shown in reference [13] that an 
optimum thrust augmentation ratio value of 1.42:1 may be 
reached when the ejector diffuser was designed with the in
cipient stall criterion for an overall llD ratio of 6:1 and X = 
19. In the present investigation using a Griffith type diffuser, 
an even higher thrust augmentation ratio of 1.60:1 was ob
served for similar conditions. For X = 40 and //D. 6:1, no 
thrust augmentation value was predicted by Tai, but in the 
present work an effective thrust augmentation ratio of 1.91:1 
was attained. 

In most of the test runs the thrust augmentation determined 
by using momentum measurements correlates well with in
dependent force measurements on the mixing chamber. This 
correlation suggests that both the ejector inlet and diffuser 
exit pressure can be approximated by the ambient pressure. At 
higher flow ratios, the inlet pressure deviated more from the 
ambient pressure, therefore the momentum measurements 
deviated from the force measurements slightly as expected. 

This investigation has shown that X is an important 
parameter in attainment of thrust augmentation ratio. A 
decrease in the thrust augmentation ratio can be expected if 
there is a decrease in X. Therefore, whenever possible a larger 
X or a larger mixing chamber should be used for a given size of 
primary jet. 
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A Simplified Method of Using 
Four-Hole Probes to Measure 
Three-Dimensional Flow Fields 
A simplified method of using four-hole probes to measure three-dimensional flow-
fields is presented. This method is similar to an existing calibration and application 
procedure used for five-hole probes. The new method is demonstrated for two four-
hole probes of different geometry. These four-hole probes and a five-hole probe are 
used to measure the turbulent boundary layer on a flat plate. The results from the 
three probes are in good agreement with theoretical predictions. The major 
discrepancies occur near the surface of the flat plate and are attributed to wall 
vicinity and velocity gradient effects. 

Introduction 

In a recent paper [1], Shepard described a four-hole probe 
for three-dimensional flow measurements. The advantages of 
four-hole probes over five-hole probes, such as fewer 
measurements and reduced instrumentation during 
calibration and application of the probe, a simpler probe with 
a smaller head, and smaller errors due to wall vicinity effect 
and shear gradient effect, are offset by the complex method of 
Shepherd. 

The purpose of this paper is to present a simplified 
calibration and interpolation method of using four-hole 
probes for three-dimensional flow measurements. This 
method is similar to that developed for five-hole probes by 
Treaster and Yocum [2]. This new method is demonstrated 
for two four-hole probes of different configuration. These 
four-hole probes and a five-hole probe are used to measure 
the turbulent boundary layer on a flat plate and the results are 
compared with theoretical predictions. 

Probe Geometry 

The two miniature probes used in this study are shown in 
Figs. 1 and 2, respectively. Both probe tips were fabricated 
from 0.55 mm (0.022 in.) outer diameter and 0.30 mm (0.012 
in.) inner diameter stainless steel hypodermic tubing. 
Tangential silver solder fillets are faired between the tubes. 
The probe tips are machined to a 50 degree half angle cone 
and located approximately four local support diameters 
upstream to reduced support interference effects. The probe 
support configuration in Fig. 1 is the same for both probe 
tips. 

The four-hole probe tip shown in Fig. 1 is similar to that 
used by Shepherd. The probe shown in Fig. 2 was used both in 
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Fig. 1 Four-hole probe 1 geometry 

the four-hole and five-hole probe modes. In the four-hole 
probe mode, tube 5 was not used. Tube 5 could be eliminated 
or used to mount a thermocouple. This probe has a smaller 
error due to velocity gradient effect, as the probe height in the 
pitch plane is equal to two tube diameter only. The four-hole 
probe shown in Fig. 1 and five-hole probe have larger errors 
due to velocity gradient effect, as their heights in the pitch 
plane are two and one-half diameters and three tube 
diameters, respectively. It should be noted that these probes 
are smaller than any commercially available probes, so that 
spatial and velocity gradient effects are minimized. 
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Calibration and Application Techniqes 

Calibration. The probes were calibrated in the open air jet 
tunnel of the Applied Research Laboratory [3] at the Penn
sylvania State Unversity at air velocities of 34, 26 and 17 
m/sec (112, 85 and 56 fps), respectively, to evaluate Reynolds 
number effects. The calibration was carried out at all com
binations of pitch and yaw from - 20 degrees to 20 degrees in 
10 degree increments. At each angular setting the desired 
pressures from the subject probe and the reference stagnation 
and static pressures were measured. A set of calibration 
coefficients for each probe were computed according to the 
definitions in the following sections. 

Calibration Coefficients. For four-hole probe 1 (Fig. 1) the 
following calibration coefficients are defined: 

C P P U c h ~ [ P 4 
(P2 +P3)/2]/D, C„ =(P 2 -P3)/£>, 

"^static 
= (P-PS)/Dand CPlMa = (P, -P0)/D, 

where P= (P2 + P 3 +P 4 ) /3 and£> = (P, - P). 
For four-hole probe 2, the five-hole probe used in the four-

hole probe mode (Fig. 2), the following calibration coef
ficients are defined: 

-2.5 -1.5 -0.5 0.5 1.5 " -20 -10 0 10 
CPPITCH a(DEGREES) 

4-HOLE PROBE 1 
Fig. 3 Calibration curves of four-hole probe 1 (for legend see Fig. 4) 

Nomenclature 

C, Ppitch 

c„ 

c, Ptotal 

c„ 
D 
d 
P 
P 
R 
V 

X 

z 

a 

8 

pitch coefficient, defined in text (CPITCH in 
figures) 
static pressure coefficient, defined in text 
(CPSTATIC in figures) 
total pressure coefficient, defined in text 
(CPTOTAL in figures) 
yaw coefficient, defined in text CPYAW in 
figures) 
(Pi - P), N/m2 (psi) 
probe diameter, m (ft) 
pressure, N/m2 (psi) 
mean pressure, N/m2 (psi), defined in text 
Reynolds number = Ved/v, dimensionless 
velocity, m/s (fps) 
distance from flat plate leading edge, m (ft) 
distance between flat plate and probe axis, m 
(ft) 
pitch angle, degrees (see Fig. 2) 
yaw angle, degrees (see Fig. 2) 
boundary layer thickness, m (ft) 

t] = nondimensionalized distance between flat plate 
and probe axis = Z/8 

B = flow angle = tan~l(Ve/Vx), degrees 
v = kinematic viscosity of air, m2 /s (ft2/s) 
p = air density, kg/m3 (slug/ft3) 

meridional angle = sm~x(Vr/Vm), degrees 
pressure coefficient 

Subscripts 

a = atmosphere 
e = boundary layer edge 
0 = stagnation quantities 

m = meridional direction, direction of resultant of 
the velocity components in x and r directions 

r,6,x = along the cylindrical (r,d,x) coordinate 
directions 

s = static quantities 
1,2,3,4,5 = refer to tube numbers of the probe (see Figs. 1 

and 2) 
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Fig. 4 Calibration curves of four-hole probe 2 
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Fig. 5 Calibration curves of five-hole probe (for legend see Fig. 4) 
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Fig. 6 Reynolds number effect on calibration curves 

c ,p i , c h =^3- / 3 , ) /A CP y a w=(P2-P3) /A 
^s la,ic ={P-Ps)/Dnnd C„total = (P, -P0)/D, 

where/5 = (P2 + P3)/2and£> = (P, - P). 
For the five-hole probe (Fig. 2) the calibration coefficients 

are defined in the same manner as presented in reference [2]: 

= ( P 2 - P 3 ) / A C ^ . c h = ( ^ - P s ) / A Ct ̂yaw 

c„ = (P-Ps)/DandC.. = (P, -P0)/D, 

where P= ( P , + P 2 + P 3 + P 4 ) / 4 and£> = ( P , - P ) . 

The preceeding sets of calibration coefficients were found 
to be the most convenient and to have high sensitivities. 

Calibration Results. The calibration coefficients, at an air 
velocity of 34 m/s (112 fps) are presented in Figs. 3 to 5, for 
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Fig. 7 Comparison of flow properties at X = 0.954 m and 0 deg yaw 
angle 

the four-hole probe 1, four-hole probe 2, and five-hole probe, 
respectively. They are presented in the following forms: 

(i) Cn . . vs C„ at various a and /3 

(ii) C„ , v s a at various (3 
v ' ^static ^ 

(iii) Cp vs a at various /3 

From Figs. 3 to 5, it is evident that the sensivities of the 
four-hole probes are comparable to those of the five-hole 
probe. For example, in the region of zero yaw and pitch 
angles, C„ and C„ . . have sensivities of 0.070 and 0.055 

° Pyaw / 'p i tch 

per degree, respectively, for the four-hole probe 1. For the 
four-hole probe 2, the corresponding values are 0.038 and 
0.072 per degree, respectively. For the five-hole probe, Cp 

and Cp have sensivities of 0.075 and 0.075 per degree, 

respectively. The sensivities of Cp and Cp . obtained 

from the proposed method for all probes are slightly higher 
than the sensivities of the corresponding calibration coef
ficients of Shepherd's method. 

The negligible effect of Reynolds number variation at /3 = 0 
deg is demonstrated in Fig. 6 for these probes. 

Application Technique. By incorporating the appropriate 
set of the previously defined calibration coefficients the 
application technique is the same as that presented in 
reference [2]. 

A brief comparison of the proposed method with 
Shepherd's method [1] is in order. In Shepherd's method, the 
space immediately upstream of the probe tip was divided into 
six similar zones, to utilize the symmetry of the tip of four-
hole probe 1. In each zone, the pressures, in decreasing 
magnitude, are evaluated. In determining the flow field from 
the measured pressures, the corresponding set of calibration 
coefficients has to be used. In the present method, such 
complexity is avoided, by using the same set of calibration 
coefficients for every zone. 
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Fig. 8 Comparison of flow properties at X = 0.954 m and 20 deg yaw 
angle (for legend see Fig. 7) 

Application. To determine the accuracy of the interpolation 
program, the following method was employed for all the 
probes. The calibration data at three velocities were used as 
measured data and the calibration coefficients at a velocity of 
34 m/s (112 fps) were used in the interpolation programs. By 
comparing the interpolated values with the measured data the 
accuracy was determined. From this analysis the following 
accuracy can be expected for measurements with any of the 
three probes: 

yaw and pitch angles: ± 0 . 5 degree 
velocites: ± 1 % of total velocity 

static and stagnation pressures: ± 1% of dynamic head 
based on total velocity 
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These estimates are valid only when the probes are in 
uniform and nearly uniform flows. When they are measuring 
flows, which are affected by errors due to wall vicinity and 
large velocity gradient (such as boundary layers on a flat 
plate), the magnitude of errors, especially in pitch angles and 
static pressures, is larger near the surface. For a five-hole 
probe used in reference [4], which is similar to that used in 
this investigation, the maximum errors in pitch angle and 
static pressure, which occur very near the surface, are less 
than 3 degrees and 5 percent of dynamic head based on the 
total velocity, respectively. As the probe moves away from the 
surface, the errors decrease in magnitude. Beyond two probe 
diameters, these errors are negligible. The same order of 
magnitude of errors may be expected for the probes employed 
in the present investigation. These wall effects are in 
agreement with those documented by Treaster and Yocum [2]. 

To further investigate the accuracy of the probe, the probes 
were employed to measure the turbulent boundary layer on a 
flat plate, at a distance of 0.954 m (37.5 in.) from the leading 
edge of a flat plate. A trip wire was attached near the leading 
edge of the flat plate, to ensure that the boundary layer 
developed on the flat plate was turbulent. The results from 
this experiment at 24.4 m/s (80 fps) with the probes oriented 
at 0° and 20° relative to the flow in the yaw plane are shown 
in Figures 7 and 8, respectively. The arrangement is shown as 
an inset in Fig. 7. The resulting data from each probe are 
compared with theoretical predictions for a turbulent 
boundary layer, assuming a 1/7 power law for the velocity 
profile [5]. 

The following relationships can be derived for a two-
dimensional boundary layer on the flat plate, with zero 
pressure static gradient. 

V/Ve=v
wl 

^-^s = 2{P0-Ps)/Pn 

= (V/Ve)
2=v

2/1 
forZ<5 

V/Ve= 1 

Flow angle 6=0° 
Meridional angle </> = 0 ° 

for Z>5 

for all Z 

The calculated boundary layer thickness at the 
measurement position [5] is 20.2 mm (0.795 in.), which 
corresponds to 12.1 times the probe diameter. 

From the figures, it is evident that the results from all the 
probes, in the region away from the surface, compare well 
with the theoretical prediction. Within two probe diameters 
from the surface, the errors in the static and stagnation 
pressures, flow and meridional angles, and velocities are 
considerable due to the wall vicinity effect. 

When the probes are at a yaw angle of 20 degrees relative to 
the flow direction, the errors are of the same magnitude of 
those when the probes are at zero angle with the flow direc
tion. 

Conclusions 
The following conclusions are drawn from the present 

investigation. 
1. Because of its simplicity and versatility, the proposed 

method to determine three-dimensional flow using four-hole 
probes is very attractive. The same method can be used for 
four-hole probes of different configuration and five-hole 
probes with minor modifications. 

2. The proposed method is much simpler to use than 
Shepherd's method [11. The sensivities of CD and C„ .,. 
obtained from the proposed method are slightly higher than 
sensivities of the corresponding calibration coefficients of 
Shepherd's method. 

3. The results obtained from the probes compare very well 
with the theoretical predictions, except within two probe 
diameters from the wall where wall-proximity effects are 
present. 
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Orifice Contraction Coefficient for 
Inviscid Incompressible Flow 
The theory for steady flow of an incompressible fluid through an orifice has been 
semi-empirically established for only certain flow conditions. In this paper, the 
development of a more rigorous theory for the prediction of the orifice flow con
traction effect is presented. This theory is based on the conservation of momentum 
and mass principles applied to global control volumes for continuum flow. The 
control volumes are chosen to have a particular geometric construction which is 
based on certain characteristics of the Navier-Stokes equations for incompressible 
and, in the limit, inviscid flow<. The treatment is restricted to steady incompressible, 
single phase, single component, inviscid Newtonian flow, but the principles that are 
developed hold for more general conditions. The resultant equations predict the 
orifice contraction coefficient as a function of the upstream geometry ratio for both 
axisymmetric and two-dimensional flow fields. The predicted contraction coef
ficient values agree with experimental orifice discharge coefficient data without the 
need for empirical adjustment. 

Introduction 

The flow of fluids through orifices is of practical im
portance to industry, especially with regard to flow rate 
measurement of the fluid being transported. Over the past 
several decades, various standards have been established for 
flow measurement methods utilizing orifices so that reliable 
results could be obtained. It is interesting to note that despite 
such investigation and standardization, the flow behavior or 
orifices has been established universally only for certain flow 
conditions and the relationships between governing variables 
remains largely empirical. In this work, the theory of orifice 
flow behavior is expanded and a more detailed mathematical 
treatment of the representation for the flow conditions in an 
orifice that exist at very high Reynolds numbers are presented. 

The orifice discharge coefficient, C, is conventionally 
defined to be the ratio of the actual flow rate through an 
orifice to that predicted by an equation derived from one-
dimensional inviscid flow theory. In a previous paper, the 
author showed that it is possible to represent the orifice 
discharge coefficient by the product of three independent 
coefficients termed the contraction coefficient, the viscosity 
coefficient, and the flow prof He coefficient [1]: 

to = CA0*j2gcp'Ap/(l-\)2 (la) 

C = CpCcC„ (lb) 

In the previous paper, attention was focused on predicting 
the viscosity coefficient, C„, which corrects the theoretical 
equation for stream wise viscous effects. It is the dominant 
coefficient of the three at extremely low Reynolds numbers 
(Re0 < 16). In this paper, the focus is on the prediction of the 
contraction coefficient, Cc, which is the dominant coefficient 
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Engineering Division, March 22, 1983. 

at the other extreme —very high Reynolds numbers 
(Reo>105 ; |6<.7). The contraction coefficient corrects the 
theoretical equation for the convergence of the flow as it 
issues from the orifice. A future paper will deal with the 
profile coefficient, Cp, which tends to be of secondary im
portance for the standard orifice geometry under common 
flow conditions, but becomes more important for orifice 
flows near transition or as the orifice diameter ratio ap
proaches unity. The profile coefficient corrects for wall in
duced viscous effects on the flow field and as a consequence it 
usually is the dominant coefficient for flow through pipes, 
nozzles, Venturis, and similar geometries. 

The Contraction Coefficient Uncertainty 

Determination of the orifice contraction effect has at
tracted the attention of analysts and experimentalists for 
many decades. When viewed broadly, the results of these 
investigations have been in good agreement but, when viewed 
from the contemporary requirement for high accuracy (e.g., 
± 1 percent), especially for metering orifice applications, then 
a rather large disparity is found to exist. 

Early on, analysts were able to show that an orifice in a 
plane of infinite extent, when fitted with a Borda mouthpiece, 
has a theoretical discharge coefficient of 0.5 under inviscid-
flow conditions due to contraction effects [2]. In inviscid 
orifice flow, the contraction solely determines the flow field 
structure so that the contraction coefficient and the discharge 
coefficient are identical. One of the successes of potential 
flow theory (also inviscid) has been the prediction of the 
discharge (contraction) coefficient for the two dimensional 
orifice in an infinite plane (without a mouthpiece) using 
conformal transformation techniques [3]. This classic result: 

C, 
ir + 2 

= 0.611 (2-d) (2) 
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Fig. 1 Two-dimensional orifice flow 

is in good agreement with experimental orifice discharge 
coefficient data (better than with the Borda mouthpiece 
result). On the other hand, there is an extensive body of ex
perimental orifice data taken at high Reynolds numbers for 
which the discharge coefficient is less than 0.611 [4]. Since, as 
noted, the classic result is for inviscid flow (i.e., for a 
Reynolds number indefinitely high), this disparity is 
somewhat unsettling. Moreover, analysis based on complex 
numerical schemes have more recently confirmed that the 
theoretical value for the orifice contraction coefficient for 
very high Reynolds numbers is indeed less than what con
ventional potential flow theory predicts [5]. 

It is also interesting to note that most potential flow 
theories have been developed for the two-dimensional 
geometry and not the axisymmetric orifice geometry-the 
geometry type for which most of the orifice discharge 
coefficient data have been accumulated. While it has never 
been proven in general that the contraction coefficient is the 
same for the two flow types, it is possible, in the case of the 
Borda mouthpiece geometry mentioned previously, to show 
that the same theoretical result is obtained. In order to shed 
additional light on this matter, both two-dimensional and 
axisymmetric contraction coefficient theories are presented in 
this paper. 

V 
flow 

direction 

Fig. 2 Axisymmetric orifice flow 

Approach 

The basic approach uses the well accepted global-control-
volume momentum-balance technique, an elementary version 
of which was used in the Borda mouthpiece orifice theory [6]. 
In the particular approach used here, the conservation of 
mass and momentum equations are written for control 
volumes having non-planar imaginary "surfaces." The basis 
for this approach can be traced to the Navier-Stokes (N-S) 
equations. The complete set of N-S equations for the three 
common coordinate systems are readily found in the literature 
and are not repeated here. 

Consider first the N-S equations in the cylindrical coor
dinate system suitably simplified by presuming the flow to be 
time invariant, the density and viscosity to be constant, with 
body forces nonexistent, and where the flow is invariant for 
all values of the z coordinate. Under these conditions, the r-
component equation is: 

dvr v„2' dvr 

or r dd dr 
r d / i d \ 

1 d2vr 2 dve 

r2 dd2 i 

and the 0-component equation is: 

(3) 

V'1F + Tle 
1 d2ve 

r2 dd2 

I dp 
7 U 
2 dvr 

~rY~aJ 

+ ix dr Qrl^) 
(4) 

C = discharge coefficient 
C, = integration constant 
Cc = contraction coefficient 
Cp = profile coefficient 
Cv = viscosity coefficient 
D = diameter 
p = density 
v = velocity 
r = radius (radial coordinate) 
y = normal to the axis coordinate 
w = flow rate 
X = general approach factor 
8 = angular coordinate 

p = pressure 

V 
* 
<t> 
U 
a 

A 
K 

y 
13 

Pw 
a 

viscosity 
convergence angle 
azimuth angle 
bulk velocity 
potential surface area ratio 
(surface to base) 
area 
orifice to upstream channel 
width ratio = alb 
orifice to upstream area ratio 
orifice to upstream diameter 
ratio = alb = D0/Du 

mean wall pressure 
orifice half width or radius 

b = upstream channel half width or 
pipe radius 

p° = stagnation pressure 
Re = reynolds number 
V = differential operator 

Subscripts 
u = upstream 
s = imaginary potential "surface" 
d = downstream 
o = orifice plane 
w = wall (upstream face of the 

orifice plane) 
r = coordinate component 
d = coordinate component 
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control volume 

potential "surface" _\> 

Fig. 3 Control volume 

These equations describe the incompressible, constant 
viscosity flow in a two-dimensional convergent channel as 
depicted in Fig. 1. If it is asserted that streamlines are coin
cident with rays emanating from the line origin (equivalent to 
a sink in potential flow theory) then the velocity components 
in the ^-direction also disappear (along with the z com
ponents). Equations (3) and (4) accordingly simplify to the 
following set: 

dvr dp r d / l d \ 1 B2v,.l 

dr dr 

0 = 
1 dp_ 

36 

[ 2 3vr 1 
(6) 

At very high Reynolds numbers where viscous forces 
become relatively unimportant, equations (5) and (6) show 
that the pressure is constant on constant radius circular arcs as 
depicted in Fig. 1. With pressure constant, it follows that 
velocity must also be constant on these .arcs. For a fixed 
orifice opening (dimension 2a in Fig. 1), the distance to the 
origin from the opening becomes infinitely large as the 
convergence angle, $, approaches zero. In the limit, the 
constant potential circular arcs appear as straight vertical 
lines normal to the /•-coordinate axis. Under these conditions, 
the /•-coordinate is equivalent to the Cartesian x-coordinate 
and accordingly there is no pressure gradient in the y-
direction. (This is in agreement with the commonly held and 
experimentally verified notion for one-dimensional flow 
fields.) Also under these conditions equation (5), with 
viscosity, fi, equal to zero, is identical to the Euler equation or 
the differential form of the Bernoulli equation. 

A similar approach can be taken for the spherical coor
dinate system equation set. Under the same flow conditions, 
and with invariance in the azimuthal coordinate, 4>, this 
equation set describes the axisymmetric orifice flow situation 
as depicted in Fig. 2. Again, with the assertion that the 
streamlines are coincident with rays emanating from the 
origin as depicted in Fig. 2, the 0-velocity components 
disappear and the spherical equation set becomes: 

dvr dp r , 2 1 

o=-i 
/• 

dp_ 

d6 

2 dvr 
(8) 

When viscous effects vanish, equations (7) and (8) show 
that pressure (and hence velocity) is constant on curved-
imaginary-potential "surfaces" of constant radius from the 
origin, which are, in fact spherical sectors. And again, for a 
fixed opening size, as the convergence angle, $, diminishes, 
the distance to the origin becomes increasingly large until, in 
the limit for $ arbitrarily small, the spherical sector ap

proaches a planar circle on which pressure and velocity are 
constant. This is in concert with inviscid, axisymmetric pipe 
flow usually described in the cylindrical coordinate system. 

The Spherical Sector Control Volume Analysis and the 
Borda Mouthpiece 

A number of useful deductions can be made from a flow 
analysis which uses the control volume method when it is 
constructed around the spherical/circular sector potential 
"surface" concept. For the first of the analyses presented 
here, the control volume is constructed downstream of the 
spherical sector, which, for ease of analysis, is located at the 
exit plane of the orifice. The free streamlines of the jets outer 
boundary as it issues from the orifice form the control 
volumes boundaries as depicted in Fig. 3. The downstream 
closure "surface" is chosen at a point where the streamlines 
are parallel which, following the previous arguments, causes 
it to be a planar circle. Figure 3 depicts a generalized orifice 
geometry formed by an axisymmetric conical body, unlimited 
in extent, having a convergence angle $ with respect to the 
axis of symmetry. When $ equals 7r/2, the conventional 
(infinite) planar orifice geometry results. For $ approaching 
7T, the geometry models the Borda mouthpiece orifice1. It is 
important to note that Fig. 3 can represent either the two-
dimensional or the axisymmetric flow situation, the latter 
when viewed in the meridional plane. 

Before beginning the analysis in detail, it is well to re-
emphasize that the analysis is for inviscid flow even though 
the N-S equations are fundamental to it. Accordingly, the 
velocities and pressures are constant on each control volume 
surface which in turn implies that a "fully slipped" condition 
prevails on any solid surface and on appropriate control 
volume "surfaces." 

We begin by denoting the ratio of the spherical sector 
surface area to the orifice opening area by a. Then, referring 
to Fig. 3, the global-mass-flow-continuity equation for the 
control volume can be expressed as: 

pUsaA0=pUdAd (9) 

Equation (9) can be normalized and rearranged to obtain an 
equation for the velocity ratio. 

Us Cc 

"77- = - 00) 
Ud a 

where Cc is the downstream normal "surface" to orifice 
opening area ratio which is conventionally termed the con
traction and in this paper is termed the contraction coef
ficient. Utilizing the momentum theorem, the axial force 
balance on the control volume produces the following 
equation: 

pUs
2A0+(ps-pd)A0-PUd

2Ad = 0 (11) 

Dividing through by A0 and replacing the area ratio by the 
contraction coefficient yields: 

PUs
2+ps-pd-pUd

2Ce=0 (12) 

At this point it is convenient to introduce the Bernoulli 
equation. This equation can be used to relate the stagnation 
pressure, p°, to the local velocity and pressure at any point in 
the flow field, viz: 

P°-Ps=2pU'2 

P°-P*=2pUd2 

(13) 

(14) 

1 Strictly speaking, the Borda mouthpiece has a rounded entrance lip. 
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Using the mathematical ploy of both adding and sub
tracting p° in equation (12), it is possible to substitute 
equations (13) and (14) into equation (12) with the result: 

1 , 1 , 
~pUs

2+-pUd
2 -Pud

2cc=o 
Dividing equation (15) through by Ud yields: 

i/JMV 
2 V UH ) 2 

•C, = 0 

(15) 

(16) 

It is now possible to substitute equation (10) for the velocity 
ratio in equation (16) to produce: 

m -c f + i=o (17) 

Equation (17) is obviously quadratic in the contraction 
coefficient Cc, and the solution for Cc is given by the 
quadratic formula, viz: 

Cc = a2-[aA-a2]'A (18) 

where only the root for a negative radical is found to have 
physical significance (Cc >1 has no meaning). Equation (18) 
is a geometrically general result for any situation in which the 
theoretical constraints can be satisfied. In particular, given 
the arguments put forth in the preceding section, it is valid for 
both two-dimensional and axisymmetric orifice geometries. 

Two-Dimensional Solutions and the Wall Pressure 
Problem. Some interesting two dimensional solutions of 
equation (18) can be obtained when the area ratio a, is given 
by the circular relation: 

a= ($in radians) (19) 
sin* 

Substitution into equation (18) yields: 
$2 / $ 4 $ 2 \ Vi 

C,. = -
- ( sin2* Vsin4$ sin2$/ 

(20) 

While equation (20) appears to be indeterminate at $ = 0 
and at * = ir, it can be shown through the application of 
L'Hospital's rule that as $—0, equation (20) has the limiting 
value of unity (a satisfactory result since a contraction is not 
expected when fluid emanates from a constant width chan
nel). A second application of the rule for $— -K yields Cc =0.5, 
which is in accord with the classical Borda Mouthpiece result 
(as well it should since the same theoretical approach has been 
used). However, when the angle $ = 7r/2, equation (20) 
predicts the contraction coefficient has a value of 0.5646, a 
value substantially less than the potential flow prediction of 
0.611. But, agreement can be obtained between the two 
theoretical techniques at $ = 7i72 by fitting the orifice with a 
Borda mouthpiece when the orifice plane is finite in extent. 
Application of the conformal transformation theory to this 
two-dimensional Borda mouthpiece geometry yields the 
following result [7]: 

C,. 
K L K2 KJ 

(21) 

where K designates the orifice to upstream channel width 
ratio. Interestingly enough, not only does this equation 
predict the same contraction coefficient value at the limit K = 0 
(e.g., Cc = 0.5), but has the same form as equation (18). It can 
be seen that equation 21 approaches the value of unity as the 
width ratio, K, approaches unity. With this cornerstone of 
agreement established, the next question is - can the control 
volume theory be made to yield equation (21). 

To show that it can, it is first necessary to bring the up
stream geometry into the equations through the use of a 
control volume upstream of, and adjacent to, the previously 
considered control volume. The situation is depicted in Fig. 4. 

Fig. 4 Borda mouthpiece geometry 

The upstream control volume is used to obtain the constraint 
for the area ratio, a, instead of equation (19), since equation 
(18) retains its validity. The continuity theorem applied to this 
control volume yields: 

PUuAtt=pUsAs (22) 

which, upon rearrangement, can be expressed in analogy to 
equation (16) as: 

j / = « 7 (23) 

where y is the orifice-opening-to-upstream-conduit area ratio. 
Again using the momentum theorem, an axial force balance 
on the upstream control volume produces the following 
equation: 

pU„2Al,+puAll-pw(A„-A0)-psAQ-pUs
2Ao = 0 (24) 

where p„ is the average area (area weighted mean) pressure 
acting on the end closure surface as shown in Fig. 4. Dividing 
equation (24) through by the upstream area, A„, and again 
using 7 to represent the area ratios thus formed, produces: 

pU,2 +p„-pM -y)-psy- pUs
2y = 0 (25) 

Once again simplification can be gained by the addition and 
subtraction of the stagnation pressure and a substitution of 
the Bernoulli equation, followed by the appropriate non-
dimensionalization. The result of these operations is: 

-y + 
\P° -pw 1 
lp°-pj 

(1-T) = 0 (26) 
- P" ~Ps 

Substitution of equation (23) into equation (26) and solving 
for the area ratio, a, produces: 

1 ( l - 7 ) 
L / 7 ° -

•Pw (27) 
y y LP" -ps 

Equation (27), like equation (18), is a geometrically general 
result. For the two dimensional case, y is replaced by the 
width ratio, K. With this replacement, and substituting 
equation (27) into equation (18), and comparing the resultant 
equation to equation (21), it can be seen that the two 
equations from the two different theories are identical if, and 
only if, the mean wall pressure, /?„,, is equal to the stagnation 
pressure, p°. The important point about this finding is that 
agreement between control volume theory and potential flow 
theory can be obtained when pressure distributions on 
relevant surfaces are made the same for both. 

The Elliptical Theorem and the Wall Pressure Postulate 

Of special importance to this paper is the fact that equation 
(27), with p„,=p°, shows that the shape of the potential 
surface between the upstream and downstream control 
volumes is determined by the upstream area ratio. As K ap
proaches unity so does the "surface" area ratio, a, and this 
can occur only through a distortion of the "surface" shape 
from a spherical or circular configuration. Since the surface is 
considered a true potential, it must be normal to flow vectors 
at the orifice lip, which vectors are parallel to the orifice plane 
at that point. An elementary geometric construct which 
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Fig. 5 Orifice with finite upstream geometry 

satisfies these conditions is the ellipse. Accordingly, it is 
postulated that the potential surface is either an ellipse for 
two-dimensional orifices or an ellipsoid for circular orifices. 
The surface area to base area for both can be shown to be a 
function only of the eccentricity. In this light the eccentricity 
of the potential surface is related to the pressure distribution 
on the adjacent orifice plane. The question now arises as to 
the correct theoretical description of the orifice plane pressure 
distribution and the resultant mean pressure. 

Both the spherical/circular sector control volume and the 
potential flow theories can provide clues to the nature of the 
pressure distribution. Returning first to equation (19) (the two 
dimensional circular sector area ratio equation); for the 
conventional orifice case, *=7r/2, this equation yields an a2 

value of 7r2/4. Now equation (27), with y=K, will also yield 
this result if the mean pressure difference ratio is given by the 
following expression: 

P ~PW 

P°~Ps [T-']fe (28) 

Next a similar expression can be obtained from the 
potential flow theory by first inverting equation (17) to obtain 
an expression for a in terms of the contraction coefficient. 
Equation (1) can be substituted into the resulting relation and 
upon comparison to equation (27), agreement will result if the 
mean pressure difference ratio is given by: 

Pu -Pw 

P°-Ps 

IT2K 1 I" K "1 

~ w -1\\ —r (29> 
L i r - 4 J L K - 1 J Equations (28) and (29) are quite similar and it is interesting to 

note that both are functionally dependent upon the upstream 
width ratio, K, and that both predict the mean pressure to be 
the stagnation pressure when K is zero. Next we turn our at
tention to developing an alternative representation for the 
pressure distribution, one which presents the distribution 
explicitly rather than as a mean. 

Wall Pressure Distribution. The potential surface con
struct eases the representation of the orifice plane pressure 
distribution because it provides a means for conceptualizing 
the pressure "discontinuity" which exists at the orifice lip. As 
shown in Fig. 5, the fluid streaming along the wall passes 
from the pressure^, at the juncture of the lip and "surface," 
to the downstream pressure, pd, via a sudden expansion. The 
wall pressure distribution upstream of the orifice lip is based 
on the N-S equations in the following manner. Referring to 
Fig. 1, for a given streamtube of width dd, the flow tube cross-
sectional area must vary in proportion to r for the two-
dimensional case (by analogy, in proportion toy for $ = TT/2). 
Flow continuity requires that: 

U< r 
(30) 

and substituting into the integral form of equation (5) with 
/x = 0 yields: 

Pw = 
pUs 0 + C: (31) 

At the lip, for $ = w/2; r=rs =y0=a;pvl =ps; and thus 

PUS 
+ Ct (32) 

By analogy to the Bernoulli equation used earlier, it follows 
that the integration constant C, is identical to the stagnation 
pressure p°. Using this fact and rearranging equation (31), 
one can obtain the following expression for the pressure 
distribution: 

p"-p 
; - ( T ) : 

p -ps
 v y 

One can also show that if equation (33) is used in the in
tegral for the wall pressure force in an axial force balance on 
the upstream control volume for K = 0 , that the trivial result 
0 = 0 is obtained. This meaningless identity can be avoided by 
considering the finite geometry situation (i.e., KT^O), and then 
the orifice in an infinite plane can be treated as a limiting 
condition. Further, equations (28) and (29) indicate that a 
geometric variable should be found in the pressure 
distribution equation. The satisfaction of these requirements 
is accomplished by the introduction of a wall pressure 
distribution postulate. 

Various inviscid fluid-dynamic theories indicate that a 
stagnation pressure condition is reached at the apex of a right 
angle turn [8]. It is hypothesized here that such a stagnation 
condition occurs in orifice flow at the juncture of the orifice 
plane and the upstream conduit as shown in Fig. 5. It is 
further conjectured that the pressure monotonically decreases 
from this value to the lip pressure. A formal derivation of an 
equation possessing these attributes is not attempted here; 
rather equation (33) is modified to yield these characteristics 
through the inclusion of K terms, in a way suggested by 
equations (28), (29) and (33): 

-Pv. ( f ) * - ] ^ (34) 

This postulated function retains the exponential pressure 
distribution characteristic while satisfying the boundary 
conditions at y = a and y = b. To re-emphasize, this postulated 
function must be considered a first approximation to an exact 
potential flow (nonviscous) solution, presumably nonexistent 
at this time. As a consequence, the use of equation (34) can 
only be justified by the fact that meaningful results are ob
tained when it is used in the control volume force balance. 

The derivation of the upstream control volume force 
balance equation is next repeated using an integral for the 
orifice wall pressure force contribution: 

pUlb- P„b- pwdy-psa-pU2a = 0 (35) 

The postulated pressure distribution relation, equation 
(34), can be utilized in equation (35) if appropriate algebraic 
manipulations are performed. Performing these 
manipulations and nondimensionalizing the resultant 
equation produces: 

(Uu\
2 1 f"p°-pw _, 

(uj +-bll^p-s
dy-^ (36) 

Equation (36) is now of the form that allows the sub
stitution of equation (34). Making this substitution and 
performing the integration results in the following equation: 

40/Vol. 107, MARCH 1985 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



\UJ K 
1 + -

\-2K+K2 

1-K 
(37) 

Substituting equation (23) into equation (37) and solving 
for the "surface" area ratio, a, yields: 

«2 = - r— . (38) 
1 + K 

Equation (38) is remarkably simple and obviously satisfies 
the constraint of no contraction at K= 1. Moreover, at K = 0 , 
a1 =2. The corresponding value for the contraction coef
ficient, Cc from equation (17), is 0.5858. These results are 
recapitulated in Table 1 which shows the similarities between 
the three theoretical approaches. 

Like the classic potential flow theory result, the elliptical 
theory shows the contraction coefficient to be independent of 
fluid-dynamic quantities (e.g., pressure ratio). Unlike the 
classical theory, however, it shows the coefficient to be 
dependent on the geometry. 

Axisymmetric Orifice Geometry 

Equations (18) and (27) are valid for the axisymmetric 
orifice geometry as well as the two dimensional geometry. 
Differences arise in the representation for the pressure 
distribution and hence the area ratio for the potential 
"surface." If, in the axisymmetric case, it is presumed the 

Table 1 Comparison of two-dimensional orifice theories 
infinite orifice plane-* = 0 

Contraction 
"Surface" area ratio coefficient 

_2 

Potential flow theory a = 
IT 

7TZ-4 

2 

=1.6815 0.611 

•K 

Circular arc theory a ===== —==2.467 
4 

0.5646 

Elliptical theory 
1+K 

= 2(@K = 0) 0.5858 

surface is a spherical sector, then it can be shown that the area 
ratio is given by: 

2 2 
a= = : (39) 

sin'-* sin$tan$ 

Interestingly enough, equation (39) when substituted into 
(18) yields the same value for the contraction coefficient at 
$ = 0 and $==7r as does the two-dimensional equation; 
namely, 1.0 and 0.5, respectively. However, at $=7r/2, a 
value of 0.5359 is obtained which is not only different from 
the two-dimensional theoretical value, but compares even less 
well with experimental values. 

Unfortunately, there does not appear to have been a 
conformal transformation theory developed for the 
axisymmetric orifice with which to compare. However it is 
possible to develop an analogous elliptical theory using a 
similar pressure distribution postulate. To do this we return to 
Fig. 2 and the simplified N-S equations. 

The differential surface area of a spherical surface sector 
annulus is given by: 

dA=2Trr2dd (40) 

which, by analogy to the development used previously, results 
in the following expression for the pressure difference ratio: 

i0 _ „ / r \ 4 
(41) -Pw 

( * ) ' P"~Ps 
It also can be shown that the use of equation (41) in the 

integral term of the upstream control volume force balance 
equation for the orifice in a infinite plane results in the same 
trivial identity, 0 = 0, so that once again use must be made of 
a finite upstream geometry. Presuming the existence of the 
corner stagnation pressure, the analogous expression for the 
postulated pressure distribution is: 

-Pw W-'][^] '«' fl4 

Using this relation and following a development parallel to 
the two-dimensional analysis, it can be shown that the 
following equation is obtained: 

Legend 
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elliptical theory; equations 1.3 f, A4 

estimated viscous correction due to a 

fully developed pipe flow velocity profile 

Data from references <3 s, 5 

0.2 0.4 0.6 

Orifice Diameter Ratio - D0/D,. 

Fig. 7 Comparison of axisymmetic orifice discharge coefficient data 
with inviscid elliptical contraction coefficient theory 

@ 

2 i 
i + 

l - 2 < 3 2 + / 

1 - f l 4 (43) 

Substituting the velocity ratio expression derived from the 
flow continuity equation, equation (23), with y = (32; and 
solving for the surface area ratio results in the following 
expression: 

(44) 
1+/32 

which is of the same algebraic form as the equation for the 
two-dimensional orifice geometry; and more importantly, at 
/3 = 0 yields the same value for the area ratio, a. In other 
words, this theory yields the same value for the contraction 
coefficient for the orifice in an infinite plane for both the two-
dimensional and axisymmetric geometries, even though the 
equations are different. This value, Cc =0.5858 is in excellent 
agreement with published contraction coefficient values 
determined by numerical techniques for the circular orifice 
[9]. It also agrees very well with extrapolated experimental 
orifice discharge coefficient data [10]. This theory shows that 
for the same values for the diameter and width ratios, (3 and K 
respectively, different contraction coefficient values will 
result except at the limits 0 and 1. That is, analgous 
geometries in axisymmetric and two-dimensional orifice flows 
do not have, in general, the same contraction coefficient. On 
the basis of area ratio, however, the contraction coefficient 
values are identical. 

Comparison With Orifice Data 

It must be recognized at the outset that experimental data 
do not exist with which the present inviscid orifice contraction 
theory can be compared directly since all such data currently 
available reflect viscous influences to some extent. There is no 
known method for separating the viscous effects from 
contraction effects. Viscous influences can only be minimized 
by choosing discharge coefficient data which have been 
obtained at the highest possible Reynolds number. 

The comparison is done two ways - first from the stand
point of a variation in the convergence angle, <!>, for an un
bounded diameter ratio (e.g., (3 = 0) and for a variation in the 
diameter ratio, /3, for the flat plate orifice (e.g., $ = 7r/2). 

Using equations (18) and (39), a characteristic curve can be 
constructed which displays the contraction coefficient as a 
function of the convergence angle, $. This characteristic 
curve is presented in Fig. 6 as the solid line. This equation set 
and the resultant curve are for the spherical sector theorem; 
the only one developed with sufficient generality for this 
display. The dashed curve on the figure is the expected 
characteristic for the elliptical "surface" theory once that 
theory is fully developed. The dashed curve passes through a 
computed data point at the only convergence angle for which 
a computation can be made -a t <J>=7r/2. The dashed curve 
connects this point to the known limiting conditions. A 
representative experimental data point is also shown which is 
in excellent agreement with the dashed curve [4]. 

Figure 7 presents the variation of the contraction coef
ficient as a function of the orifice diameter ratio, f3, using the 
elliptical theorem-equations (18) and (44). A comparison 
with representative orifice discharge coefficient data is also 
presented in the figure. The solid curve gives the theoretical 
contraction coefficient variation. Interestingly enough, the 
agreement is excellent between the theory and rather old 
orifice data, presumably obtained without due regard for 
upstream influences [10]. On the other hand, comparison with 
more recent, high Reynolds number, orifice discharge 
coefficient data, taken under experimental conditions where 
the upstream flow conditions were fully developed, is not as 
good (the lower valued bar symbols on the figure) [4]. For (3 
values less than 0.4, the agreement with the fully developed 
flow data is excellent, however, a gradually increasing 
disparity is evident for 13 values greater than 0.4. Since the 
contraction must be zero (e.g., Cc = 1.0) at the upper limit, 
iS = 1, the low experimental values at the higher /3 conditions 
must reflect viscous effects on the discharge coefficient - that 
is, profile effects. It can be shown theoretically that the 
profile coefficient for fully developed pipe flow is about 0.85 
at high Reynolds numbers (Re= 1.106) [11]. The dashed curve 
in Fig. 7 joins this value with the predicted contraction 
coefficient values at the lower (3 ratios to show that a much 
better prediction of the orifice discharge coefficient would be 
obtained with a theory that combines both effects 
simultaneously. One could also expect the occurrence of 
second order viscous effects on the contraction coefficient 
itself at lower Reynolds numbers. Either this viscous effect, or,, 
the lack of long entrance sections upstream of the orifice 
could account for the agreement between the theory and the 
older data at the higher (3 values. Theoretical treatment of 
these velocity profile effects is in progress. 

Comparison With Empirical Equations 

There are several strictly empirical equations for predicting 
the discharge coefficient of flat plate orifices at relatively high 
Reynolds numbers. A fairly recent paper by Miller sum
marizes the agreement between these equations and applicable 
data [12]. These equations are currently undergoing review 
and recorrelation by a number of organizations. It is possible 
to compare them to the inviscid elliptical theory by dropping 
all Reynolds number containing terms. Further the elliptical 
theory shows that the inviscid contraction coefficient, and 
hence the inviscid discharge coefficient, is independent of all 
geometric factors save the upstream diameter ratio. Logically, 
it must also be independent of instrumentation location used 
for the determination of the inviscid discharge velocity (which 
in reality is the purpose of the Ap term in the orifice 
equation). Accordingly these types of terms have also been 
arbitrarily dropped from the empirical equations. With these 
modifications, the Stolz equations is: 
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Fig. 8 Comparison of elliptical theory with modified empirical for
mulas for discharge coefficient as Re-co.- Stated range applicability 
for empirical equations 

0.5959 + 0.0312/32 -0.184/38 Re-oo 

range of applicability . 15 < /3 < .75 

(45) 

All terms in the ASME-AGA "flange tap" equation for the 
orifice discharge coefficient contain dimensionally dependent 
terms and hence this equation is too flawed for this com
parison. However, the ASME-AGA "1-D, 1/2-D" and 
"vena-contracta" equations for the orifice discharge coef
ficient can be modified to yield: 

Outside the stated range of applicability the empirical 
equations and the theory agree quite well for (3 less than 0.2. 
In fact the Miller equation and the theory agree to two 
significant figures (0.5858 versus 0.5812) at /3 = 0. However 
for j3 values greater than 0.7, the equations diverge from the 
theory and from each other as well. Only the Miller equation 
tends to the theoretically correct value of unity at /3= 1. The 
ASME-AGA equation is the furthest off at a value of 0. This 
result has apparently come about from a misunderstanding of 
the (l-(34)' /2 term which appears in the inviscid flow 
theoretical orifice equation. It is not necessary for the 
discharge coefficient to go to zero as the diameter ratio goes 
to unity to keep the predicted flow rate finite since, for viscid 
flow, the pressure drop term, Ap, goes to zero faster than the 
( l- l6

4) ' / 5 term. A detailed discussion of this misun
derstanding and of the theoretical difficulty which exists with 
the appearance of dimensional and instrumentational factors 
in the empirical equations, is outside the scope of this paper. 

Conclusion 

This paper has presented the development of a theory for 
predicting the orifice contraction coefficient as a function of 
the upstream area ratio. It also sets the frame work for in
troducing the effect of the convergence angle on the con
traction coefficient. At present, the theory has been developed 
only for incompressible, inviscid flow for concentric circular 
and two dimensional orifices. The theory shows that the same 
contraction coefficient values are obtained for axisymmetric 
and two-dimensional orifice flows at the geometry limits of 
unity and zero, but not elsewhere (when the contraction 
coefficient is calculated as a function of the diameter ratio or 
the width ratio). The calculated value of 0.5858 for the 
contraction coefficient at a diameter ratio of zero agrees with 
extrapolated experimental data and with numerical 
calculations as well. Development of a theory for the profile 
coefficient and expansion of the contraction coefficient 
theory to include Reynolds number effects and density 
changes would provide the means for predicting the orifice 
discharge coefficient over a wide range of conditions. Work in 
this direction is in progress. 
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C 

C 

[0.6014 + 0.3760034 + 1.5<3I6)](1 - /34) 'A 

" 1 - D , ! /2 -Dtaps" 

[0.5992 + 0.4242G84 + 1.25/316)](1 - I34)'A 

"vena contracta taps" 
range of applicability . 15 < (3 < .75 

• R e — o o 
(46) 

(47) 

Likewise, the Miller equation can be modified by dropping 
the dimensionally dependent terms to give: 

C = 0.5812 + 0.0933/3-0.1929/32 +0.1641/33 Re-oo (48) 

range of applicability . 15 < /3 < .75 

These modified empirical equations are compared to the 
elliptical theory contraction coefficient prediction in Fig. 8. 
Over the range of stated applicability, the empirical equations 
agree with each other quite well, but depart from the 
theoretical equation when /3 is greater than 0.4. This departure 
is probably a consequence of the fact that the empirical 
equations do not account for the demise of profile effects as 
Re—oo. 
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Calculated Turbulent-Flow Meter 
Factors for Nondiametral Paths 
Used in Ultrasonic Flowmeters 
In applying the ultrasonic contrapropagation method to the measurement of flow in 
highly attenuating fluids, or to fluids in conduits having only limited access, it is 
sometimes necessary to interrogate along a path other than the conventional tilted 
diameter or midradius chordal paths. The meter factor K, which relates the path 
average to the area-averaged flow velocity, is derived from Nikuradse profiles for 
several new paths. The results enable one to locate transducers so that for the 
chosen type of path, K will be (a) minimally dependent on Re, and/or (b) ap
proximately equal to unity, or (c) represented by a simple function of Re. For 
smooth-wall steady flow conditions, the error in the calculated K's is estimated as 
±2 percent ± the effect due to the disturbance of Nikuradse profiles by the 
transducers. 

1 Introduction 

The ultrasonic contrapropagation method of measuring the 
flow velocity of liquids or gases is based on the difference in 
transit time upstream versus downstream [1, 2]. The velocity 
calculated from the transit times /, and t2 is the harmonic 
mean velocity averaged over the interrogation path. For flow 
velocities small compared to the sound speed, the path-
averaged flow velocity is: 

up=c2At/2L (1) 

where c = sound speed (assumed constant over the path, in 
the present work), At = t2-tx, and L = axial projection of 
the interrogation path in the flowing fluid Ordinarily the 
path is along a tilted diameter. 

The path average is related to the area-averaged flow 
velocity u by the meter factor K: 

K=u/up (2) 

Consider conventional interrogation of Newtonian fluid in a 
smooth-wall round pipe, along a tilted diameter path. If the 
beam diameter d is small compared to the conduit inside 
diameter D,K = 0.750 for laminar flow and 

#=1/ (1 .12-0 .011 log Re) (3) 

for turbulent steady flow, where Re is the Reynolds number 
[3]. 

In the past, to avoid sensitivity to flow profile, paths other 
than the tilted diameter have been suggested or used. For 
example, in the four-chord Gaussian quadrature method, 
paths are located in planes having normalized distances from 
the axis Xk = ± 0.8611 and ± 0.3399 [4, 5]. Paths at or near 
the midradius chord [6, 7] are useful if the profile is known to 
be axisymmetric. 

Contributed by the Fluids Engineering Division for publication in the JOUR
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Fig. 1 Meter factor K versus normalized distance from wall y/f l , for 
ultrasonic interrogation path parallel to axis, for Reynolds numbers Re 
= 4000,1.1 x 105 and 3.2 x 106 
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Fig. 2 Meter factor K versus normalized distance from wall ylR at 
which the in-the-flowstream transducer is located, for ultrasonic in
terrogation path along a tilted radial segment from wall to y, for Re as in 
Fig. 1 
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A . 

Fig. 3 Meter factor K for symmetrical chord segment of projected 
length 0.828R representing projection of ultrasonic interrogation path 
that is skewed with respect to pipe axis, and located in a plane at the 
normalized distance B/fl from the axis, for Re as in Fig. 1 

Fig. 4 Meter factor K for ultrasonic interrogation path in midradius 
plane, along segment of midradius chord, with path skewed to pipe 
axis, and of projected length x, for Re as in Fig. 1. S = 0.866R, which is 
half the length of one leg of the projected inscribed equilateral triangle 
formed by three midradius chords. 

The present calculations are motivated by the need to 
predict K for turbulent profiles, when fluid attenuation, phase 
(or cycle) ambiguity or restricted access lead one to consider 
special paths which can be substantially shorter than the 
conventional tilted diameter path. The insets in Figs. 1-4 
define the end points of four special paths. Figure 5 includes 
perspective views which make it easier to visualize how such 
special paths are utilized in practical applications, for 
example, in refinery flare stack installations [11]. 

2 Method of Calculation 

In principle, the calculation of A" would seem fairly straight
forward, since the normalized velocity is usually represented 
by a simple power law, w/t/0 = (y/R)Wn, where U0 = 
velocity on axis, u = velocity at the distance^ from the wall, 
R = pipe radius, and 6 < n < 10 for 4000 < Re < 3.24 x 
106 [8], For points at or near the wall, however, this power 
law is inadequate, as previous writers have pointed out, and as 
is evident from the profile data plots given in Nikuradse's 

mrj-Rfioius-90 

3O-90 MID-RfiDIUS ( BIBS I 

Fig. 5 Practical implementations of some of the special paths of the 
present work. Illustration courtesy Exxon Company USA, Baytown, 
Texas [11]. 

1932 paper [9] or in more readily available translated 
reproductions [8]. 

For points at or very near the wall, and some other points, 
we found that a fifth degree polynomial [10] provides a better 
representation of Nikuradse's data [9] than the power law. 
Tables 1-3 list normalized velocities as a function of y/R for 
Re = 4000, 1.05 x 105, and 3.24 x 106, respectively. In 
Tables 1-3, the N column lists normalized values of the 
velocities measured by Nikuradse. The PN column lists the 
values generated by the fifth degree polynomial at the par
t icular^/^ (polynomial coefficients are listed in Table 4), and 
the PL column lists the power law values. At each y/R, the 
PN or PL value closest to Nikuradse's is marked with an 
asterisk (*); this information is required as explained next. 

In order to find the average velocity over each given path, 
(other than paths parallel to the axis, Fig. 1) y/R was first 
calculated for eleven equally-spaced points along the path. A 
normalized velocity was then calculated at each y/R. If the 
y/R value was one used by Nikuradse, for example, y/R = 
0.07, then the velocity value in the N column was chosen. 
Otherwise, either the PN or PL equation was used, depending 
on which yielded a velocity closest to Nikuradse's data at the 
nearest y/R that he used. For example, to find the velocity for 
y/R = 0.076 when Re = 4000 (Table 1), we chose, according 
to the above criterion, the power law. 

For Fig. 1, the normalized velocities calculated for Re = 
4000, 1.05 x 105,and3.24 X 106 were converted to K using 

-u/un (4) K = (u/U0)/(up/U0)-„,„p 

In this case (paths parallel to axis) we used only the PL, not 
the PN, to determine u/UQ [8]: 

u/U0=2n2/(n + l)(2n+l) (5) 

Using this equation, the ratio of mean to maximum velocity 
was determined for the three values of Re we use as examples, 
and the numerial results appear in Table 5 next to the K = 
1.0000 entries. 

The choice of the power law (PL) to represent the 
Nikuradse profile is accurate enough to explain the 
calculation of K for paths parallel to the pipe axis. Even 
though a polynomial (PN) can fit Nikuradse's data better 
than the PL near the wall, this advantage does not appear 
important in this particular example, for the following 
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reason. In tests in 250 mm diameter pipe with 19 mm diameter 
transducers spaced about 300 mm apart (see below) it was 
found that the dominant error in calculating K for paths 
parallel to the axis was due to perturbation of the profile by 
the transducers themselves. Furthermore, the potential ad
vantage of the PN over the PL is right near the wall. 
Generally, this would not be a wise location because of the 
profile gradient; the influence of wall roughness on the actual 
profile, in practical piping situations; and the somewhat 
unpredictable modulation of the sound beam by reflections 
from the pipe wall. 

For the other paths considered in this paper, Figs. 2-4, 
depending on Re and y/R, the PN offers some slight ad
vantage in calculating K accurately. This can be seen in Tables 
1-3 by comparing PL and PN values with Nikuradse's data. 
The asterisked PN values are typically about 1 to 2 percent 
closer to Nikuradse's data than the corresponding 
nonasterisked PL values. Near the wall, the PN advantage is 
more obvious. Note, however, that asterisked PL values are 
closer to Nikuradse's data than the corresponding 
nonasterisked PN values. 

The question of how closely Nikuradse's smooth-wall 

Table 1 Comparison of N, PN, and PL for Re = 4000 

y/R 
0.00 

.01 

.02 

.04 

.07 

.10 

.15 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

.96 

.98 
1.00 

N 
0.297 

.411 

.514 

.584 

.652 

.690 

.737 

.774 

.831 

.874 

.906 

.932 

.954 

.975 

.990 

.997 

.999 
1.000 

PN 
0.368* 

.416* 

.461 

.539 

.630 

.697* 

.767 

.803 

.830* 

.852 

.891 

.938* 

.973 

.981* 

.975 

.987 

.998* 
1.014 

PL 
0.000 

.464 

.521* 

.585* 

.642* 

.681 

.729* 

.765* 

.818 

.858* 

.891* 

.918 

.942* 

.963 

.983* 

.993* 

.997* 
1.000* 

'Asterisks explained in text. 

Table 2 Comparison ofN, PN, and PL for Re = 1.05 x 105 

_ 
0.000 

.518 

.572* 

.631* 

.684 

.720 

.763* 

.795* 

.842 

.877 

.906 

.930 

.950 

.969 

.985* 

.994* 

.997 
1.000* 

y/R 
0.00 

.01 

.02 

.04 

.07 

.10 

.15 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

.96 

.98 
1.00 

N 
0.423 

.535 

.581 

.649 

.703 

.739 

.778 

.809 

.861 

.898 

.925 

.950 

.967 

.981 

.994 

.998 

.999 
1.000 

PN 
0.482* 

.520* 

.555 

.616 

.688* 

.742* 
. .800 

.831 

.859* 

.882* 

.915* 

.953* 

.981* 

.987* 

.982 

.990 

.998* 
1.010 

steady flow data represent actual profiles (rough walls and/or 
unsteady flow) is not treated here. 

3 Calculated Results and Intepretations 

Graphs of K versus a path geometry parameter for the four 
types of paths are given in Figs. 1-4. Of particular interest are 
paths for which K nearly equals unity, and/or where K is 
nearly independent of Re. Regarding practical im
plementations, one also prefers paths for which the trans
ducer ports can be fabricated safely and easily; paths for 
which K is substantially independent of the particular trans
ducer; and paths which do not subject the transducer holder 
to excessive stress, nor the transducer to excessive wear. 

Comparing paths parallel to the axis (Fig. 1 and Table 5) 
one finds, as expected, that K ~ 1 at y/R ~ 0.24. Here, K is 
nearly independent of Re for fully developed turbulent flows. 
The three values for y/R in Table 5 that yield K = 1.0000 are 
obtained by equating (y/R)w" to the right-hand side of 
equation (5), for n = 6, 7, and 10. The entries for y/R = 
0.2929 are included because at that particular y/R, if the flow 
were laminar (parabolic profile) the local velocity up would 
equal the area-averaged velocity u. Conversely, it may be 
worth reiterating a point made in [1], p. 445, dealing with 
the incorrect use of a "turbulent K" when in fact the flow is 
laminar. Consider, for example, the location y/R = 0.24. 
(Again, this location is preferred for turbulent profiles 
because here, K ~ 1 with relative immunity to Re.) If the flow 
profile were parabolic, but one inadvertently retained K = 1, 
an error of nearly 15 percent occurs (up/u = 0.8448). The 
theoretically correct value for K is 1.1837 in this laminar flow 
situation. 

(It may be mentioned that the proper, i.e., theoretical or 
calibrated value for K, can in fact be introduced into the 
instrument's flow velocity algorithm if the flowmeter can 
compute a reasonable estimate for Re after each interrogation 
based on up and other site parameters such as pipe diameter 
and kinematic viscosity [12]. The relative insensitivity of A'to 
Re shown in Figs. 1-4, for preferred path locations, enables 
one to calculate how tolerant one may be of errors or un
certainties in Re, for an allowable error or uncertainty in K.) 

Paths parallel to the axis are the easiest of the present cases 
with respect to calculating K. Air flow tests conducted in our 

Table 3 Comparison of N, PN, and PL for Re = 3.24 X 106 

P~L 
0.000 

.631* 

.676* 

.725* 

.766 

.794 

.827* 

.851* 

.887 

.912 

.933 

.950 

.965 

.978 

.990* 

.996* 

.998 
1.000* 

y/R 
0.00 

.01 

.02 

.04 

.07 

.10 

.15 

.20 

.30 

.40 

.50 

.60 

.70 

.80 

.90 

.96 

.98 
1.00 

N 
0.546 

.649 

.683 

.732 

.774 

.806 

.841 

.866 

.901 

.928 

.948 

.965 

.978 

.989 

.996 

.999 

.999 
1.000 

PN 
0.599 

.630 

.658 

.708 

.767' 

.810' 

.856 

.881 

.901" 

.916" 

.940' 

.968" 

.989* 

.992* 

.987 

.993 

.999* 
1.008 

Table 4 List of rounded-off coefficients for fifth degree polynomial of the form Y = C0 + 
CiX1 + C2X

2 + C3X3 + C4X* + C5X
S 

Re 
4000 

1.05 x 105 

3.24 x 106 

Co 
0.3675 
0.4818 
0.5989 

c. 
5.1063 
3.9727 
3.2324 

c2 
-22.4380 
-16.9802 
-13.8650 

c3 
47.4210 
35.6317 
28.8959 

C4 

-45.6929 
-34.2899 
-27.6228 

c5 
16.2502 
12.1942 
9.7684 
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Table 5 Normalized velocities and K's calculated from power law «/{/„ = (y/R)1/n, and equation (4), for 
paths parallel to axis 

Re 
n 

y/R 
0 
.2 
.2929 
.2453 
.2423 
.2367 
.4 
.6 
.8 
.9 

1.0 

Table 6 

V^o 
0 

.7647 

.8149 

.7912 

.7896 

.7865 

.8584 

.9184 

.9635 

.9826 
1.0000 

4000 
6 

K 
00 

1.0347 
.9706 

1.0000 
1.0021 
1.0060 
.9217 
.8615 
.8212 
.8052 
.7912 

Comparison of K calculated in 
diameter calculated from equation (3) [3] 

Re 

4000 
1.05 x 105 

3.24 x 106 

K, tilted radius, 
present work 

0.944 
0.941 
0.960 

1.05 x 10s 

up/U0 

0 
.7946 
.8391 
.8181 
.8167 
.8140 
.8773 
.9296 
.9686 
.9851 

1.0000 

present ' 

K 

1 

K 
OO 

1.0278 
.9733 
.9983 

1.0000 
1.0034 
.9309 
.8785 
.8432 
.8291 
.8167 

3.24 x 
10 

up/U0 

0 
.8513 
.8814 
.8689 
.8678 
.8658 
.9124 
.9502 
.9779 
.9895 

1.0000 

106 

K 
OO 

1.0170 
.9789 
.9964 
.9977 

1.0000 
.9489 
.9112 
.8853 
.8750 
.8658 

work for tilted radius versus K for tilted 

, tilted diameter, 
equation (3) 

0.926 
0.940 
0.955 

Difference, 
Percent 

1.9 
0.1 
0.5 

laboratory by D. R. Wallace, however, showed that for 19 
mm diameter transducer housings installed on the axis of a 
250 mm diameter pipe, and spaced about 300 mm apart, the 
ultrasonically measured flow was linearly related to the actual 
flow but was not higher than the area-average flow (as 
predicted by the present method of calculating K, which 
neglects transducer effects on the profile) but in fact was 
substantially lower than the area-average. This demonstrated 
that the transducers behaved as significant obstacles near the 
axis, and motivated the investigation of paths skewed to the 
axis, or otherwise oriented so that blocking by the transducers 
would not significantly affect the average flow between the 
transducers. Air flow calibration tests subsequently con
ducted in ~ 200 and 400 mm diameter pipes have shown that 
small transducers installed in the flowing fluid, but at one end 
of a path oblique to the flow cause much less perturbation to 
the profile in the interrogated path than if the transducers 
were located at the ends of a path which is parallel to the flow. 

On the other hand, the well-established axial interrogation 
of paths which are very long compared to the transducer 
diameter, as in the so-called offset style flowcell [1, 2] in
dicates that paths parallel to the axis can indeed yield a K 
within about 2 percent of the value predicted theoretically, 
depending on how the profile is sampled. Better results may 
be expected, for example, when the entire cross section is 
interrogated, rather than when only part of the cross section is 
interrogated. 

The present results enable one to locate transducers so that 
for the chosen type of path, K will be (a) minimally dependent 
on Re, and/or (b) approximately equal to unity, or (c) 
represented by a simple function of Re. For pipes in which the 
profile is equivalent to that found in [9], and for sound beams 
of diameter d sufficiently small compared to the pipe's inside 
diameter 2R, the error in the present calculated K's is 
estimated as ± 2 percent ± the effect due to the disturbance 
of the profile by the transducers. (This error estimate is based 
on comparing independently-calculated K's, as discussed in 
the paragraph below.) The PN coefficients and normalized 
velocity comparisons may be useful in calculating K for paths 
other than those shown in Figs. 1-4. 

Referring now to Fig. 2, the radial segment yields K = 1 ± 
0.02 for paths from the wall to about 63 to 75 percent in 
towards the axis. As a check on Fig. 2, K's at y/R = 1 (tilted 
full radius) are within 2 percent of the values calculated by 
equation (3) for the conventional tilted diameter. See Table 6. 

In Fig. 3, for a hammock-like symmetrical chord segment 
of end-view-projected length = 0.828R, K ~ 1 with rather 
little dependence on Re for B/R = 0.7. K's dependence on Re 
is minimal for B/R corresponding to where the curves in
tersect. As a check on Fig. 3, for 5 = 0 , K's are less than those 
given by equation (3), which makes sense since the segment 
gives inadequate weight to be lower-velocity contributions 
near the wall. K increases as B increases because, as B in
creases, the chord segment samples more lower-velocity 
contributions than higher-velocity contributions. 

One particularly convenient and practical location for the 
chord segment of projected length 0.828R is at B/R = 0.5. At 
this elevation the chord lies in the midradius plane; K is about 
0.92; and K varies only about ± 1.5 percent over the plotted 
range of Re. Note that for this midradius chord segment K is 
about 8 percent less than unity, whereas if the segment 
reached from wall to wall in the midradius plane, the "tur
bulent" K = 0.9961, according to [1], p. 495. Again, for the 
midradius chord segment, K is smaller than for the full 
midradius chord because the segment preferentially weights 
the higher velocity contributions. In fact, for any B/R in Fig. 
3, 

K, chord segment <Kr, (6) 

Regarding practical applications, the geometry of Fig. 3 is 
utilized in one refinery flare line in a pipe of approximately 
750 mm diameter, with B/R = 0.5, and where the distance 
between the radiating faces of the two transducers, measured 
along the 45 deg skewed path, is 400 mm (reference [11], Fig. 
10, upper right). 

Turning now to Fig. 4, K approaches 1, with lessening 
dependence on Re, as the midradius segment approaches the 
semichord length {x/S— 1), as expected, based on analyses in 
[6] and [7]. 

In closing, it may be of interest to offer a general remark, 
namely, in Figs. 1-4, the calculated curves exhibit less cur
vature as Re increases, and as the terminus or path location 
moves away from the wall. In other words, the flatter the 
profile, the less K depends on the terminus or location of the 
path. As an extreme example, for plug flow (perfectly 
uniform flat profile), K - 1 independent of the portion of the 
flow that is sampled. 

Practical applications of the present special paths are 
illustrated and discussed in [11] and [12], with respect to 
ultrasonically measuring gas flow in flare lines in a 
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petrochemical refinery. Examples of the transducers used in 
flare gas and some other applications appear in [12] and [13]. 
Practical counterparts of the paths symbolized by the insets in 
Figs. 2-4 are given in Fig. 5. 
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A Numerical Method for Solving 
Momentum Equations in 
Generalized Coordinates 
(Its Application to Three-
Dimensional Separated Flows) 
A finite difference calculation procedure has been developed for the calculations of 
the three-dimensional fully elliptic flows over irregular boundaries. A simple 
control volume analysis is introduced to reformulate the momentum equations in 
the generalized velocity and coordinate system, without resorting to any extensive 
tensor calculus. The finite difference equations are obtained by discretizing the 
conservation equations in this generalized system. For a practical application of the 
present finite difference calculation scheme, calculations are carried out on the 
three-dimensional separated flow in a converging-diverging rectangular duct. The 
calculation results reveal an extremely complex nature of the three-dimensional 
separated flow. 

Introduction 

The complexity of the problem in numerical calculations 
often stems from the treatment of curved wall boundaries. It 
is possible to employ Cartesian or cylindrical polar meshes 
even for the irregular boundaries. However, one must also 
accept the penalties such as inefficient distributions of mesh 
points and the extensive interpolative calculations so as to 
satisfy the required boundary conditions. Moreover, a 
considerable number of the mesh points will be wasted since 
the points external to the flow field do not participate in the 
calculations in any meaningful manner. 

To overcome this problem, coordinate transformations 
have been widely used to solve a number of complex flow 
problems e.g. [1-4]. Most of these numerical calculation 
procedures, however, restrict themselves to certain conditions 
such as the two-dimensional configuration and the con
formity of geometry to a certain functional form. It is quite 
often that the source program requires considerable 
modifications each time for a slight change in the geometrical 
configuration. 

The present paper introduces a general finite difference 
procedure for the three-dimensional elliptic flows over 
irregular boundaries. The momentum equations are refor
mulated into arbitrary velocity and coordinate systems by 
means of a simple control volume analysis without resorting 
to any extensive tensor calculus. The resulting conservation 
equations in the generalized system are integrated within a 
finite volume element to obtain the general finite difference 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division, March 15, 1982. 

forms. It will be shown that, when the coordinate trans
formation is introduced in this generalized manner, it is 
possible to formulate the finite difference equations so 
universal that a single computer code may be used for any 
type of coordinate transformation simply by specifying the 
coordinate base vectors appropriate to a given geometrical 
configuration. 

For the illustrative purpose, the finite difference 
calculations are performed on the separated flow through a 
converging-diverging rectangular duct. The calculation results 
presented here reveal an extremely complex nature of the 
three-dimensional fully elliptic flow. 

Momentum Equations in Generalized Coordinate 
System 

Figure 1 depicts a transformed domain (£, i\, f) and its 
corresponding physical domain {x, y, z). Gradient of a general 
scalar <j> may be written in either of the coordinate systems as 

V$ = l<t>x+]<t>y + k<l>z = dl<t>i. + +d2<i>tl + di($>i (la) 

where 

d[ = (rrixrt)/],d2=(rfxri)/J,d3 ={rixrri)/J (\b) 

r=ix+jy + kz and J = ri'(r1lxrf) (lc) 

The bar indicates vector quantities such as r for the position 
vector. The subscripts x, y, z, £, 17, and f denote their partial 
derivatives, and ;, j , and k are the unit vectors in the Cartesian 
coordinates (x, y, z). 

Referring to Fig. 1, (Jrf'ATjAf) may be identified as the 
vector element of the area in the physical domain, which 
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Fig. 1 Physical domain and transformed domain 

[(Jd1-u)a*[(Jd1-u)a]5A5]-^-P : Momentum 

[j(d1-f -d'P)»[J(d'f - d 'P ) ] ^? ] - ^ - : Force 

[ja%(JdVI;]|f- :Area 

[(Jd'-a>(Jd'-a)6A!=]|Jp :Mass 

Fig. 2 Momentum balance on a volume element 

corresponds to the area (A^Af) in the transformed domain. 
Correspondingly, similar geometrical relationships are valid 
for d2 and rf3. 

From the preceding geometrical consideration, one may 
draw Fig. 2 where the mass and momentum balances on an 
element Vol = A£A»;A£" are indicated in a generalized coor
dinate system. Referring to this figure, the momentum 
balance relationship may be found to be 

dX 
7 J [(d1 • u)u - d> f/p + d'p/p] = 6 (2) 

where the generalized coordinates £, rj, and f are renamed, 
respectively, by x'(i=\, 2, 3), and the usual summation 
convention is adopted for a repeated index in the expression. 
As explicitly indicated by the equation (1£>), the vectors d' are 
the contravariant base vectors such that 

(3«) d'-dj = 5'j-. Kronecker delta 

where 

4 = — r : i . e . , r £ , r „ 

and rf for / = 1, 2, and 3 (3ft) 

Moreover, f denotes the stress while the pressure and density 
are indicated byp and p, respectively. 

For the numerical computation, one must decompose the 
vector equation (2) into the scalar form. However, there is no 
need to restrict it to the conventional contravariant 
representation. Another set of base vectors git independent of 
the covariant base vectors dh may be introduced for the 
decomposition of it and f. Such a general procedure for the 
derivation of the conservation equations in the generalized 
velocity and coordinate systems is described in Appendix A. 
For the flows in ducts of arbitrary cross-section, it turns out 
to be convenient to retain the Cartesian velocity frame even 
using the transformed coordinates appropriate to a given duct 
geometry. The momentum equation for this case as described 
in Appendix A is given by 

d 

a*7 (d) J(d'jUJuh-psf!G
IJ du"\ 

lix7) 

J dp_ 

pdhdx> 

d . . duJ 

where 

d^d'-ej and peff = V+P, 

(4a) 

(4*,c) 

e, is the Cartesian unit vectors while G'J is the metric tensor as 
defined by equation (All) in Appendix A. The effective 
viscosity (ceff) formulation as described in equation (A5) is 
adopted for the stress components where v is the laminar 
kinematic viscosity while v, is its turbulent counterpart which 
should be set to zero for the laminar flow case (The sub- and 
super- indices used here should not be confused with those in 
the general tensors). 

Finite Difference Form 

It is interesting to note that, when uh (for a particular h) is 
regarded as a general scalar <j>, the left-hand side of equation 
(4a) appears to be identical to the transformed form of 
7V»(«(/)-^effV</)), namely, the convection and diffusion 
rates of the general scalar </>. Thus, upon setting the right-
hand side of equation (4a) to the source term so, one may 
write the general conservation form as 

dx< 
l(d'jUJq ,G" 

dxj •J J 
(5a) 

The effective diffusion coefficient vsf! and the source term so 
to be substituted into the above general equation are listed 
below for the continuity, momentum, and energy equations. 

For the continuity equation: 

4>=1> vett = 0,so = 0 

For the momentum equations (h = 1, 2, 3): 

(j)=Uh, VeSS = V+V„ 

J dp 

~P
d'"'dx1+ dx> 

d . duJ 

(5b) 

(5c) 

For the energy equation: 

<t>=T, i>eff = v/o+v,/ot, so = 0 (5d) 

where T is the temperature while a and a, are the laminar and 
turbulent Prandtl numbers. For the turbulent flow 
calculations, the turbulence model equations may be added to 

d, 
d' 
e,-
8i 

= covariant base vectors 
= contravariant base vectors 
= Cartesian unit vectors 
= velocity base vectors 

g' = recriprocal vectors of g. 
J = Jacobian of transformation 
p = pressure 
r = position vector 
u = velocity vector 

x' = generalized coordinates 
b) = Kronecker delta 
v = kinematic viscosity 
p = density 
T = stress 
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Fig. 3 Grid nomenclature for discretization 

the governing equations in a similar fashion without any 
difficulties. 

Since all governing equations are expressed by a single 
expression given by the general equation (5), the discretization 
can be carried out once for all governing equations following 
the procedure employed in the innovative work on the three-
dimensional parabolic flow by Patankar and Spalding [5]. For 
this purpose, the general equation (5) is rewritten as follows: 

dx' 

where 

j(tf;V</>-»eff l ^ l 2 - ~ ) =s°(*) + *>(0) 

s°(<t>) = 
dx> 

•JvatlGH- W'l25j] 
d<t> 

!x> 

(6a) 

(6b) 

In the above equations, the index associated with the absolute 
value \dL I is to be excluded from the summation rule. Hence, 
\dj I2 = d'-d' for a particular / (no summation on i). Only the 

diagonal components of the metric tensor Gu are retained in 
the left-hand side of the equation (6a). Its counterpart s° in 
the right-hand side accounts for the nonorthogonality since it 
obviously vanishes for the orthogonal set of d'. 

The finite difference equation is reduced by integrating the 
general equation (6a) within a finite volume element of 
Vol = Ax1 Ax2 Ax3. The details of this discretization procedure 
has been already given by Patankar and Spalding [5] for the 
three-dimensional parabolic flow. Since its extension to the 
fully elliptic form is rather straight forward even in this 
transformed coordinates, only the final form of the difference 
equation is given below: 

(A?+A-)tf=At<t>?++A-<l>r 

where 

+ SO (la) 

SO= (s° +so) ly-o Vol 

Af = -ftCOt+DIt 

A-=frCO-+DI-

COj )=Je?y'(Vol/Ax')l;C/() 

and 

£>/(> s(Jve f f \d' l2/6x'')(Vol/Ax') \J( I 

(lb) 

(7c) 

(Id) 
no summation on i 

(le) 

(V) 

The locations of 0(0/*"+ > 4>F~ > $)>tne interpolation factors 
(ft ,ff) a n d the internodal distances (Ax',8x'+ , 8x'~) are 
shown for a particular general coordinate x' in Fig. 3. In the 
above equations, the subscript / such as in </>, and A; indicates 
that the quantities are to be defined along this particular x'-
coordinate, while the superscripts such as 0, + , and - refer 
to the relative locations (along x') where the quantities are 
evaluated. Furthermore, the summation rule is effective in the 
finite difference equation (la) while the rule does not apply in 
the equations (7c—/) (again, the present short-hand notation 
should not be confused with the tensor notation since 0,, y4, 
etc. are all "scalar" quantities). The resulting finite difference 

equation (7a) gives an algebraic equation for the scalar 
</>"(-</>? = <$>i = 4>%) m terms of the values at six neighboring 
nodes. Thus, if the pressure field is given, the finite difference 
equation (7a) can be written for each variable at each node. 
This procedure, then, yields a closed set of algebraic 
equations, which can be solved by any standard iterative 
scheme such as the tridiagonal matrix algorithm. However, 
the velocity field thus obtained usually does not satisfy the 
continuity equation, since the pressure field assumed 
beforehand does not represent the true pressure field. 
Therefore these pressure and velocity fields must be sub
sequently adjusted to satisfy the continuity principle. 

For the correction on the pressure and velocity fields, 
Patankar and Spalding [5] formulated the "pressure 
correction equation" equivalent to the Poisson's equation for 
the pressure field by substituting an abbreviated momentum 
balance relationship into the continuity equation. This 
pressure correction equation can be solved most effectively 
using the so-called "staggered" grid system, in which the 
velocities are defined midway between the pressure nodes. 
The present formulation of the pressure correction equation is 
in essence identical to the one developed by Patankar and 
Spalding for the three-dimensional parabolic flow. The details 
of the formulation for the three-dimensional fully elliptic flow 
of the present concern are given in Appendix B for the 
generalized coordinate system. The final expression of the 
pressure correction equation (B14) takes the same form as the 
general finite difference equation (7a). 

Numerical Solution Procedure 

The resulting closed set of the finite difference expressions 
is universal in the sense that it can be used for any coordinate 
systems simply by spatially specifying the coordinate base 
vectors (d, or d') appropriate to a given flow configuration. 
This input procedure for the base vectors can be carried out 
either analytically or digitally. 

For the flows in ducts of variable cross-section, a family of 
grid systems may be conveniently specified analytically as 

r=xlii + Ytbx
2e2-\-x

leT, (8) 

where Y,b is the vertical distance between the upper wall 
boundary and the horizontal plane of symmetry so that x2 

varies from zero to unity. Subsequently, the equation (8) 
specifies d) as 

(T 1 0, 0 

d) = -xL 

dx' 
-iny„ 1/Ylf _ X 2 , n y 

dx' 
(9) 

0, 0, 1 
Once the duct geometry is given in terms of Ylb(x

1, x1), all 
coefficients and source terms needed for the finite difference 
equations can be specified by substituting the equation (9) into 
the corresponding equations. The function Ylb of the con
verging-diverging duct for the test calculations is described by 

1 
Y,h/L„ 1- -exp[ -(2x'/L re f)

2] (10) 

The reference length Lre[ is a half of the duct width while the 
reference velocity «ref is taken as the uniform velocity at the 
inlet of x1 = -5L r e f . The laminar flow calculations (without 
solving the energy equation) have been made at Reynolds 
number wrefLref/c = 50, for a quadrant of the duct over the 
axial distance of 32 Lref, with a highly nonuniform grid layout 
(30x9x9) . At the outlet, the zero gradient conditions are 
imposed for all variables except the pressure. It has been 
confirmed that the solution is not affected by shifting the 
outlet boundary farther downstream. 
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Calculations start with solving three momentum equations. 
Then, the resulting velocity field and the pressure field are 
corrected by solving the pressure correction equation, and the 
sequence is repeated till the solution converges. The 
requirement for the convergence has been taken as satisfied 
when the maximum change in each variable during an 
iteration becomes less than a prescribed value, 10 5. The 
computational time required for this case is approximately 14 
minutes on the CDC CYBER 175 computer system. 

Prior to the calculations on the converging-diverging duct, 
the preliminary calculations were also carried out on various 
duct geometries such as the square duct, the triangular duct 
and the constricted circular duct. Some of these results were 
examined against the exact solutions (fully developed flows), 
and others against numerical solutions. The agreement of the 
present solutions with these available solutions has turned out 
to be excellent. Neither of the non-orthogonality of the 
coordinates nor the nonuniform grid spacing affected the 
solutions. Thus the accuracy of the present finite difference 
solution procedure has been thoroughly checked. 

Calculation Results 

The calculation results obtained for the converging-
diverging rectangular duct are discussed below. The axial 
variation of the pressure field is shown in Fig. 4 where the 
pressure at the inlet is taken as the reference pressure pK{. It is 
seen that the pressure field in the expansion region exhibits 
high and low pressures at the side wall (ps) and top wall (p,) 
bisector points, respectively. 

The velocity field is plotted at the three selected axial 
stations in Figs. 5 in terms of the axial velocity contours (in 
the left-hand side) and the cross flow vectors (in the right-
hand side). As the flow passes through the throat, the cross 
flow vectors pointing originally at the horizontal plane of 
symmetry (Fig. 5(a)), change the direction toward the top wall 
bisector point, conforming to the pressure field prevailing 
through the expansion region. The on-set of the separation is 
shown in Fig. 5(b) where two distinct reverse primary flow 
regions are observed near the corner and the top wall bisector 
point. By the time the flow reaches the station at x = 0.41 LK( 

(Fig. 5(c)), two regions coalesce to form one big reverse flow 
region, and the secondary flow currents are continuously 
drawn into this reverse flow region. The separated flow region 
expands further downstream, changing its location of the 
maximum reverse flow velocity from near the top wall 
bisector point toward the corner, and the flow finally reat
taches around x = 2.2 Z,ref. 

Concluding Remarks 

A general finite difference calculation procedure has been 
developed for the prediction of the three-dimensional fully 
elliptic flows. The conservation equations are reformulated 
into the generalized velocity and coordinate systems using a 
simple control volume analysis which unhooks the velocity 
base vectors from the coordinate (covariant) base vectors. 
Although the Cartesian unit vectors are chosen for the 
velocity base vectors in the present study of the three-
dimensional duct flows, there are no special difficulties in 
generalizing the present calculation method with variable 
velocity base vectors upon discretizing the equation (A4) in 
Appendix A instead of equation (5). 

References 

1 Thorn, A., and Apelt, C. J., Field Computation in Engineering and 
Physics, D. Van Nostrand Co., London, 1961. 

2 Lee, J. S., and Fung, Y. C , "Flow in Locally Constricted Tubes at Low 
Reynolds Number," ASME Journal of Applied Mechanics, Mar. 1970, pp. 
9-16. 

3 Chow, W. L., Bober, L. J., and Anderson, B. H., "Numerical Calculation 
of Transonic Boattail Flow," NASA TN D-7984, 1975. 

4 Nakayama, A., and Chow, W. L., "Calculation of Transonic Boattail 
Flow at Small Angle of Attack," ME-TN-395-6, Dept. of Mech. and Industrial 
Eng., University of Illinois at U-C, Rept. prepared for the Research Grant 
NASA NOL 14-005-140, 1979. 

5 Patankar, S. V., and Spalding, D. B., "A Calculation Procedure for Heat, 
Mass and Momentum Transfer in Three-Dimensional Parabolic Flows," Int. J. 
Heat Mass Transfer, Vol. 15, 1972. 

6 Gal-Chen, T., and Somerville, R. C. J., "On the Use of a Coordinate 
Transformation for the Solution of the Navier-Stokes Equations," J. Computa
tional Phys., Vol. 17, 1975. 

7 Warsi, Z. U. A., "Conservation Form of the Navier-Stokes Equations in 
General Nonsteady Coordinates," AIAA Journal, Vol. 19, No. 2, Feb. 1981, 
pp. 240-242. 

8 Nakayama, A., "Three-Dimensional Flow within Conduits of Arbitrary 
Geometrical Configurations," Ph.D. thesis, University of Illinois at U-C, Apr. 
1981. 

9 Nakayama, A., Chow, W. L., andSharma, D., Summary of Methods sub
mitted to the 1980-81-HTTM-Stanford Conference on Complex Turbulent 
Flows, Sept., 1981. 

A P P E N D I X A 

Derivation of Momentum Equations in General Coordinates 
The velocity u and the stress f may be decomposed by an 

arbitrary set of vectors §•, as 
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u = g,u> and f={§i,§j)i
iJ (Al,2) 

where the dyadic operation ( , ) is used for the stress. The 
present approach may be found to be quite different from a 
general-tensor approach in the sense that the velocity base 
vectors g, are arbitrary and "unhooked" from the coordinate 
(covariant) base vectors d, (Note, u' and T" are no longer the 
contravariant tensors since g,=3, in general.) The momentum 
equation (2) may now be decomposed by the reciprocal 
vectors g' defined as 

i'*§j = &j (A3) 

The scalar product operation between the vector momentum 
equation (2) and the vectors gh yields the following scalar 
form of the momentum equation in the generalized velocity 
and coordinate systems: 

jW'j (UJU" - TJh/p) + yikW'j (u'Uk - TJk/p) 
dx' 

where 

J ., dp 

p dx' 

Jk A- JJ 

Jk 

D'j=d''gj, DiJ=d'-g-> and yfj=gk d 

ft*7 

(A4) 

(A5) 

(A6) 

(A7.8.9) 

The general equation (A4) may be appreciated by actually 
specifying g,. The contravariant representation of the 
momentum equations, for example, may readily be obtained 
by setting g, = dh which yields 

Z3j = 5j, ]yJ = Gij = di'di 

and 

W 4?3j (A10,11,12) 

Naturally, Du and y§ for this case have reduced to the con
travariant components of the metric tensor G'J and the 
Christoffel symbols of the second kind T§, respectively. The 
substitution of the above relations into equation (A4) leads to 
the expression identical to the one derived through a general 
tensor analysis by Gal-Chen and Somerville [6] and Warsi [7]. 

For the duct flows of the present concern, the velocity base 
vectors g, may be unhooked from the covariant base vectors 
d,. The transformation in the text has been carried out by 
setting §i in equation (A4) to the Cartesian unit vectors. The 
resulting equation (4a) in the text may be found to be identical 
to the one obtained by the authors [8,9]. 

A P P E N D I X B 

Derivation of Pressure Correction Equation 
Upon setting </> — uh{h = 1,2,3) in equation (7a) in the text, 

three momentum equations may be written collectively as 

(At+Ar ) (uh)f=At («A),+ + +Ar («*),— 
+so+bM<j>r-pt) (Bi) 

where 

bhi = -d'h(\o\/Ax') \xm (no summation on 0 (B2) 
P 

Here, the pressure term is treated separately from the 
momentum source SO. The pressure/? and velocity uh may be 
decomposed into the estimated value (p and uh) and its 
correction (p and iih) as 

P=p+p and uh=uh+iih (B3,4) 

The substitution of the above equations into equation (Bl) 
yields 

(«*)°=fi* (>*--/»;& 
where 

(B5) 

Bu 

(i-«»)EWH-) 
(no summation on h) (B6) 

and 

(VA 

At (u")t+ +Af («*)f- +SO + J2bhi(pr -pt) 

ah = 

The summation 

(B7) 

(uh)f(At+Af) 

is to be denoted simply by 

while 

E 
; = 1 

indicates the summation over the two values of the repeated 
index / whose value is different from that of h. Equation (B5) 
is formulated so that each velocity correction iih at xh0 is to be 
affected directly by the pressure correction p at xh + and xh ~ . 

For the continuity equation, the finite difference equation 
(7a) reduces to 

£(co,+ -cor)=o 
i 

E£(c4'-co<7)=° 
where 

cOij = Jd'jUJ (Vol/Ax!) 

(no summation on / nory) 

i.e. 

co, = X>,y 

(B8) 

(B9) 

(BIO) 

(Bll) 

Again, decomposing COt into the estimated value CO, and its 
correction COh the continuity equation (B8) may readily be 
rewritten as 

D (cot-coa)= -^(cot-don-L 

where 

>*j 
1 ££("><}-- cb^ 

(B12) 

(B13) 

Upon noting the locations of the pressure nodes relative to 
those of the velocities in the staggered grid system, the sub
stitution of the equation (B5) into the left-hand side of the 
continuity equation (B12) leads to the following pressure 
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correction equation in the form identical to that of the general 
finite difference equation (7a) in the text: 

where 

(4t+Anp?=Atpf++Arpr 

so=-'£(dot-dor)-i 

-so (B14) 

(B15) 

and 

/l(»=Jcr}fi;(Vol/Ax:'')l^() 

(no summation on 0 (B16) 

Thus, the pressure correction equation (B14) may be solved 
in the same manner as for the other governing equations. 
Subsequently, the velocity and pressure fields can be corrected 

using equations (B3,4) and (B5). The coefficient needed in the 
pressure correction equation must be evaluated from the 
current information available during the course of the 
iteration. With this view, the correction coefficients a,, and /3 
may well be set to zero since this remains to be a good 
estimation during the course of the iteration, and obviously 
becomes the exact condition as the solution converges, 
namely, p ^ O and uh — 0. A similar practice has been adopted 
also by Patankar and Spalding [5]. 
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Turbulent Air Flow Over Rough 
Surfaces 
II. Turbulent Flow Parameters 
The objective of the present study was to examine experimentally the turbulent flow 
structure in a repeated rib geometry rough wall surface as a function of the ratio of 
the roughness height to the pipe diameter (K/D), the ratio of the spacing between 
the elements to the roughness height (P/K), the axial position within a rib cycle, 
and the Reynolds number. For small P/K values, the turbulent intensities and 
Reynolds shear stress variations were similar to those found for smooth wall pipe 
flow. Unique relationships for the u' andv' were found that were valid in the outer 
layer of the flow for all axial positions and all values of P/K and K/D. 

Introduction 

In flow experiments in which repeated rib roughness 
configurations were used, the geometrical parameter used to 
describe the roughness patterns is the ratio of the spacing 
between the elements, P, to the spacing between the elements, 
K (P/K). Morris [1] has categorized this flow into three 
regimes: quasi-smooth (low P/K, P/K<1), hyperturbulent or 
wake interference (medium P/K, 7 < P/K< 16), and isolated-
roughness-element (high P/K, P/K> 16) flow regimes. The 
flow was further separated into an outer and an inner flow 
region. The outer region is defined as that flow region 
unaffected by the presence of the roughness elements whereas 
the effects of the roughness elements on the fluid flow 
properties are confined in the inner layer. 

In the quasi-smooth flow regime, the outer layer is large in 
comparison with the inner layer. Therefore, the turbulence 
profiles in the outer layer are expected to be similar to those 
found for smooth walls. There are several sand-roughened 
pipe turbulence flow measurements that demonstrate this 
fact. Robertson et al. [2-4] noted that for these types of 
surfaces, the turbulence parameters in the outer flow region 
of the rough wall are essentially the same as the smooth pipe 
when normalized with the shear velocity, Us. Goma and 
Gelhar [5] and Chen and Roberson [6], using discrete 
roughness elements in pipes, reached the same conclusion. 

For the isolated-roughness-element and hyperturbulent 
flow regimes, the outer layer is expected to behave in the same 
manner. There is little data available for the inner layer of 
repeated-rib rough wall geometries and of those available, 
they are for developing flow from smooth to rough wall 
surfaces [7-11]. As the wall is approached in the inner layer, 
the surface roughness produces a very sharp rise in the tur
bulence parameters. Downstream of the element, this effect is 
reduced and smaller increases in the turbulence parameters 
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are observed. The inner layer thickness also experiences a 
periodic variation between roughness elements for these two 
flow regimes. 

Rough wall pipe eddy diffusivity data are limited. Two 
types of small and large sand-roughness pipes were examined 
by Powe [12]. In both cases, the variation of the eddy dif
fusivity parameter, e/UsR, for the rough and smooth walls 
were similar. Liu [13], in a study of a flat plate roughened 
with transverse square bars, obtained the same e/UsR versus 
Y/b\ values for rough wall element P/K values of 2, 4, and 12 
as for a smooth wall. 5, is the boundary layer thickness of the 
wall roughess. No detailed eddy diffusivity data are available 
in the literature on a repeated rib pipe geometry. 

This study examined experimentally the axial and radial 
variations o f « ' , v', uv, and e for turbulent flow over a 
repeated rib rough wall. The roughness configurations were 
changed so that a wide range of rough wall flow regimes could 
be studied. 

Experimental Facility 

Two circular duct configurations were utilized to conduct 
the experimental measurements. In both systems, air was 
filtered at the bell-shaped inlet to the duct system by a HEPA 
filter to produce particle-free air. The maximum attainable 
Reynolds number, based on the hydraulic diameter, in the 
smalll and large diameter systems was 150,000 and 170,000, 
respectively. 

The small diameter system was constructed from 0.35 cm 
thick wall, 10.17, cm O.D. stainless steel pipe. The total 
length of the system was 8.53 m. The configuration was 
constructed of a series of 0.91 m and 0.45 m pipe sections that 
were connected with vacuum "0"-r ing flanges. When in 
place, the effective roughness height (K) of the small system 
was 0.635 cm. The tolerance between the spacer rings and the 
pipe was 0.051 cm. The distance, R, from the center of the 
pipe to the spacer surface was 4.4175 cm. The various P/K 
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Table 1 Axial location of measurement stations (X/K 
values) 

X/K 

Station 

P/K X\ X2 XI XA 
Small Pipe System 

2 
5 
7 

10 
13 
16 
19 
22 
25 

0.5 
-1.5 

1 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 

Large Pipe System 
2 

13 
24 

0.5 
-1.5 
-1.5 

K 

K 

0.635 cm 

1 
3 
1 
1 
1 
1 
1 
1 

0.954 cm 

1 
1 

3.5 
5.5 

5 
5 
8 
8 

11 
11 

5 
11 

R -

R = 

= 4.4175 cm 

1 
8.5 

11.8 
14.5 
17.5 
20.5 
22.5 

= 9.5275 cm 

11.5 
22.5 

geometries used in the small system were 2, 5, 7, 10, 13, 19, 
22, and 25. 

The second pipe system, the large pipe system, was con
structed from 0.305 cm thick wall, 20.3 cm O.D. stainless 
steel. The total length of this system was 13.41 m. Custom 
0.305 cm thick aluminum angle iron was bent into rings that 
gave roughness elements 1.27 cm wide and 1.27 cm high. 
When in place, the effective roughness height (K) was 0.954 
cm. The value of R for the large system was 9.5275 cm. 

In order to obtain a fully developed profile as rapidly as 
possible, roughness elements (P/K=2) were placed upstream 
of the test section. Seventy and seventy-five diameters were 
sufficient for the small and large pipe systems, respectively, to 
achieve a fully developed flow condition. The positions of the 
four axial measurement locations are given in Table 1. The 
first region, -Xl.'is directly behind the step (X/K = -1 .5) . 
The second region, X2, is defined by the recirculation region 
(0 < X/K < 5) and the third region, X3, extends from the 
reattachment point downstream of the element to the vicinity 
of the donwstream element. It should be noted that the X\ 
and XA locations were measurement points at the same 
relative positions with respect to the upstream side of the 
roughness element for the /th and /'+ 1th cycles. The velocity 
and turbulence measurements were made for three Reynolds 
numbers at each measurement. 

For static pressure measurements, two static pressure tubes 
were placed at the center of pipe to minimize the influence of 
velocity fluctuations. Hot-film or hot-wire anemometry 
techniques were used to measure the turbulent mean flow 
characteristics. 
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Fig. 1 Schematic diagram of experimental repeated rib configuration 
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Fig. 2 Fluctuating axial velocity components in rough wall pipe at PIK 
= 2 for KID values of 0.0714 and 0.0938. The uncertainty in the values of 
( u ' ) + are ± 16percent. 

Experimental Results and Discussion 
Detailed measurements were made of the variation of u', 

v', and uv for a large number of repeated rib configurations. 
The shear velocity, Us, was determined from friction factor 
data in the conventional manner. Rib spacing to element 
height, P/K, values of 2, 5, 7, 10, 13, 16, 19, 22, and 25 for 
the small pipe system (KID = 0.0714) and P/K values of 2, 
13, and 24 for the large pipe system (K/D = 0.0938) were 
examined. This paper summarizes the results of these ex
periments and presents some typical results. 

Outer Layer Results. In the quasi-smooth flow regime, the 

Nomenclature 

P = length of one cycle of 
repeated rib geometry 

K = height of the roughness 
element 

Us = shear velocity 
e = turbulent fluid eddy dif-

fusivity 
R = smooth pipe radius or the 

inner spacing rad ius 
measured 

Y = distance measured from inner 
spacing toward the center of 
pipe 

8, = inner layer thickness 

«' 

v' 

uv 

XI 

X2 

X3 

= fluctuating axial velocity 
component 

= fluctuating radial velocity 
component 

= Reynolds shear stress 
component 

= measurement location at 
axial distance of X/K = 
- 1 . 5 . 

= measurement location at 
axial distance of XIK = 1 

= measurement location ap
proximately midway between 
the roughness elements. 

X = 

D = 
y = 

(3 = 

D 

Exact location depends on 
PI K value. 
axial distance measured from 
downstream of the roughness 
element 
pipe diameter, 2R 
intercept of eddy diffusivity 
near the wall at station X3 
slope of eddy diffusivity near 
the wall at station XI 
radial location of the mean 
outer layer 
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Fig. 3 Fluctuating axial velocity components in rough wall pipe at PIK 
= 13,19, and 25 in the small pipe system and measurement positions 
X1.X2, andX3. For P/K = 13, Re = 98,100, u 0 = 2243 cm/s, u s = 256.8 
cm/s. For P/K = 19, Re = 98,800, u 0 = 2300 cm/s, u s = 239.6 cm/s, and 
for PIK = 25, Re = 93,200, u 0 = 2149, cm/s, u s = 229.9 cm/s. The 
uncertainty in the ulu' 0 values is ± 25 percent. 
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Fig. 4 Fluctuating radial velocity components in wall pipe at PIK = 
13,19, and 25 in the small pipe system and measurement positions X1, 
X2, and X3. For PIK = 13, Re = 98,100, u0 = 2243 cm/s, u s = 256.8 
cm/s. For P/K = 19, Re = 98,800, u 0 = 2300 cm/s, u s = 239.6 cm/s, and 
for PIK = 25, Re = 93,200, u 0 = 2149, cm/s, u s = 229.9 cm/s. The 
uncertainty in the vlv' 0 values is ± 15 percent. 

outer layer extends from the pipe center to the top of the 
elements. For P/K values of 2 and 5 in the small pipe system 
and P/K of 2 in the large pipe system, the axialjluctuating 
velocity, u'/Us, and the Reynolds shear stress, uv/Uj, were 
approximately the same in the outer layer as that for smooth 
wall flow. The radial fluctuating velocity component profiles 
in the small pipe system had a smaller slope than the smooth 
wall profile. The ratio v'/Us increased linearly from a value 
of 0.459 ± 0.003 in the center to 0.577 ± 0.033 in the vicinity 
of top of the elements. In the larger pipe system, v' /U5 values 
were essentially the same as the smooth pipe data. Figure 2 
gives typical results for the axial fluctuating velocity. This 
result agrees with Robertson et al. [2] and Chen and Roberson 
[6], Where they observed that the rough wall turbulence 
parameters for discrete wall roughness elements when nor
malized with Us are approximately the same as the smooth 
wall measurements in the outer region. 

For the hyperturbulent and isolated-roughness-element 
flow regime the shear velocity was not the best characteristic 
velocity for the fluctuating velocities. Normalization utilizing 
the fluctuating velocities at the center of the pipe gave the best 
results. 

Figures 3 and 4 show the axial and radial fluctuating 

velocities at three axial positions (XI, X2, XT) for geometries 
with P/K values of 13, 19, and 25 for the small pipe system. 
These results are typical for all geometries in these flow 
regimes. The expressions 

(7) ^ s 4 < l 

and 

= 1.54- +1.0 
R 

— =0.381 - +1.0 (8) 
V'n R 

R B 

R om 

R~ B 
<1 

were found to be valid in the outer layer of the flow for the X2 
and X3 axial positions for all geometries in both the large and 
small diameter pipe systems, and for Reynolds numbers 
ranging from 95,000 to 150,000 for all P/K values, and for 
K/D between 0.0174 and 0.0938. The outer layer distances, 
Ra,„, for the various geometries are given in Table 2. The 
square of the shear velocity, Us, was the best normalization 
parameter for the Reynolds shear stress for all stations and 
geometries. 

Inner Layer Results. Turbulence measurements in the inner 
layer were more complex for the hyperturbulent and isolated 
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Table 2 Mean outer layer thickness, Ra 

Stations 
PIK X2 X3 

Small Pipe System 

7 
10 
13 
16 
19 
22 
25 

Large Pipe System 

13 
24 

0.85 
0.85 
0.79 
0.82 
0.65 
0.76 
0.61 

0.84 
0.84 

0.85* 
0.90 
0.92 
0.91 
0.93 
0.91 
0.91 

0.94 
0.91 

"Uncertainties in these values are ± 0.03 

roughness configurations. Figures 3 and 4 also give typical 
results for each of three axial positions in these regimes. 

At the first position (X\), the axial fluctuating velocity 
components w' /w' 0 , and v'/v\ were similar for all 
geometries. Apparently the presence of the step was the 
dominating feature of the region and the flow did not 
distinguish between regimes. At the second position (X2), all 
the turbulence parameters increased sharply in the vicinity of 
the roughness element. The rate of increase varied little with 
geometry when the fluctuating velocities were normalized 
with their corresponding center of pipe values. This rate of 
increase was a more pronounced function of PIK, however, 
when these parameters were normalized with the center of 
pipe mean axial velocity. The turbulence parameters for P/K 
of 7 and 10 in the small pipe system showed negligible peaks 
caused by the presence of the step. These profiles were similar 
to the P/K of 5 geometry of quasi-smooth flow regime. All 
the plots of the turbulence velocities at the third position (X3) 
had approximately the same shape regardless of the axial 
position. The data suggest that the turbulence flow quantities 
beyond the attachment point reached a quasi-equilibrium 
state and did not change until the flow encountered the next 
step. 

The variation of the shear stress at each of the three 
positions is given in Fig. 5. At position 1 (XI), it is seen that 
for P/K of 5, the shear stress distribution is linear until the 
top of the element is reached. As the spacing between the 
roughness elements is increased (higher P/K values), the 
effect of the step becomes more pronounced. For P/K values 
greater than 10, the effect of the element on the shear stress 
extends into the flow to (R — r) /R values ranging between 0.3 
and 0.35. The shear stress variation at position 2 (X2) 
characterized by a decrease as the element is approached 
followed by a sharp increase in the stress at the top of the 
element. The effect of the element on the flow extends to (R — 
r)/R values of 0.4 to 0.45. Position 3 (-Y3) data gives insight 
into the variation of the shear stress with distance downstream 
of the element. It is seen that for X/K= 11, the shear stress 
"overshoots" the linear distribution expected for rough wall 
flow. Siuru and Logan [9] reported similar "overshoot" 
results. Data at position 3 (A3) represent flow conditions near 
the midpoint between the elements for each configuration. As 
can be seen from the figure, the "overshoot" does not occur 
for P/K values less than 19. Figures 3, 4, and 5 also confirm 
the periodic nature of the flow in the inner layer as reported 
by Siuru and Logan [9] for PIK values greater than 5(7?). 

Turbulent Eddy Diffusivity. The Boussinesq definition of 
the eddy diffusivity was used. In the quasi-smooth flow 
regime, the eddy diffusivities were distinctly different from 
other flow regimes. Figure 6 shows the eddy diffusivities for 
P/K of 2 in the small pipe system and in the large pipe system, 
respectively. In general, the eddy diffusivity in this flow 
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Fig. 6 Turbulent eddy diffusivity in the quasi-smooth flow regime for 
PIK = 2 in the small and large system. The uncertainty in the IUS R 
values range from ± 13 percent at (R-r)IR = 0.866 to ± 7 percent at 
(R-r)R = 0.326 to ± 10 percent at (R - r)IR = 0.164. 

regime increased from a small value near top of the element to 
a nearly constant value in the region of the pipe center. 

In the isolated-roughness-element and hyperturbulent flow 
regimes, the turbulent eddy diffusivities distributions were 
clearly different from those in the quasi-smooth regime. 
Measurements of turbulent eddy diffusivities were made for 
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Fig. 8 Turbulent eddy diffusivity in the hyperturbulent flow regime for 
PIK = 10 in the small pipe system. The uncertainty in the IUS R values 
range from ± 18 percent at (R - r)IR = 0.890 to ± 8 percent at (R - r)R 
= 0.322 to ± 11 percent at (R - r)R = 0.103. 

P/K values of 7, 10, 13, 19, 22, and 25. Figures 7 and 8 show 
the results for P/K = 19 and 10. As can be seen from the 
figures, values of the eddy diffusivities are given for three 
stations and flow rates. 

At the first axial position (XI) of the isolated-roughness-
element flow regime (P/K =19), the eddy diffusivity 
decreased from a relatively constant value in the outer layer as 
the step was approached. At the second axial position, the 
eddy diffusivity was essentially constant in the outer layer. As 
the wall was approached, the presence of the roughness 
element caused an increase of the eddy diffusivity where this 
increase was a function of geometry. A rapid change in the 
value of the diffusivity was observed near the top of the 
element. This rapid variation was due to two effects: the large 
velocity gradient and the increase in the Reynolds shear in the 
vicinity of the element. The velocity graduate variation was 
the more dominant of the two effects. In the large pipe 
system, similar behavior with much lower amplitude was 
observed for P/K of 24. At the third axial position (X3), the 
eddy diffusivity increased from a very small value (nearly 
zero) at the wall to a constant value near the center of pipe. 
For the isolated-roughness-element flow regime, the rise of 
the e + near the wall can be approximated by 

e+ =P(R-r)/R + y (12) 

The slope, ft varies from 0.286 ± 0.011 to 0.407 ± 0.019 and 
the intercept, y, varies from 0.013 ± 0.001 to 0.029 ± 0.006 
in the isolated-roughness-element flow regime. Table 3 gives 

Table 3 Eddy diffusivity near the wall at station X3 

P/K 7 

Small Pipe System 
7 

10 
13 
16 
19 
22 
25 

Large Pipe System 

13 
24 

0.005 ± 0.001 
0.000 ± 0.001 
0.000 ± 0.001 
0.028 ± 0.002 
0.029 ± 0.006 
0.013 ± 0.001 
0.015 ± 0.001 

0.001 ± 0.001 
0.012 ± 0.003 

0.093 ± 0.010 
0.267 ± 0.015 
0.272 ± 0.015 
0.433 ± 0.040 
0.286 ±0.111 
0.407 ± 0.019 
0.388 ± 0.017 

0.310 ± 0.019 
0.160 ± 0.043 

the values of these slopes and intercepts for geometries of 
P/K>1 in the small pipe system and greater than PIK of 13 in 
the large pipe system. 

The eddy diffusivity distribution in the hyperturbulent flow 
region (P/K = 10) was quite similar to that formed in the 
isolated isolated-roughness element case. The variation of e + 

for P/K of 10 was much less pronounced in the vicinity of the 
element (X2) than that for P/K of 19. Also the increase in 
magnitude of e+ in the third axial region (A3) was smaller. 
The slope and intercepts of equation (12) are given in Table 3. 
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Conclusions References 

1. For the quasi-smooth regime, the values of u'/us, 
v'/us, and uv/u] were essentially the same as those for 
smooth wall pipe flow for all axial stations. 

2. The expressions 

u' r R 
— = 1 . 5 4 - +1.0 

R «: 0 

om 

Y R 
<1 

= 0.381 - +1.0 
R 

Rn 

R 
< - <1 

were found to be valid in the outer layer of the flow for the X\ 
and X2 axial position, all geometries in both the large and 
small diameter pipe systems, and Reynolds numbers ranging 
from 95,000 to 150,000. 

3. The Reynolds stress distribution is linear in the outer 
layer for all flow configurations. 
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Vortex Shedding in a Linear Shear 
Flow From a Vibrating Marine 
Cable With Attached Bluff Bodies 
The present study examines the vortex street wake behavior of a flexible, helically 
wound, high aspect ratio marine cable in a linear shear flow. Particular attention is 
paid to the lock-on phenomena associated with uniform and sheared flow past the 
cable when it is forced to vibrate in the first mode, normal to the flow. An analysis 
is given of the effects on the vortex shedding and synchronization phenomena that 
are generated by placing distributions of spherical bluff body shapes along the span 
of the cable in uniform and sheared flow. The latter geometry is representative of a 
number of cable system deployments and has special consequencies for strumming 
in a shear flow. The effectiveness of these attached spheres as strumming-
suppression devices is evaluated. Synchronized vibration and/or the presence of the 
bluff bodies significantly affected the span wise character of the near wake cellular 
vortex shedding structure. The spanwise extent of the resonant, vortex-excited 
oscillations was significantly extended by the presence of the spheres along the cable 
span. This finding was particularly significant because it meant that the undesirable 
effects that accompanied synchronization would be extended over a longer portion 
of the cable span. 

Introduction 

Mooring systems and risers of offshore drilling and 
production platforms, cable networks used to support marker 
buoys, and towed cable arrays are all examples of long 
flexible, cylindrically shaped bodies. When they are towed 
through the water, or exposed to waves and currents, vortices 
are shed as the flow separates alternately from opposite sides 
of these high aspect ratio bodies. If these vortices are shed at a 
frequency close to one of the natural frequencies of the 
structural system, the shedding can lock-on to (synchronize 
with) the natural frequency if the damping is sufficiently 
small. This phenomenon, commonly referred to as cable-
strumming, is characterized by large amplitude cross flow 
oscillations, increased stresses, amplified acoustic flow noise, 
amplified hydrodynamic forces and increased fatigue and 
damage to the entire system. 

Further complicating the situation is the occurrence of 
vertical velocity gradients or sheared current profiles that are 
typically found in the oceans. The vortex shedding frequency 
along the span of a vertical or inclined cable then also varies 
with depth. Synchronization or strumming and its related 
phenomena may occur over part or all of the cable. 

The present study examines the near wake behavior of a 
flexible, helically wound, high aspect ratio marine cable in a 
linear shear flow. Particular attention is paid to the lock-on 
phenomena associated with uniform and sheared flow past 
the cable when it is forced to vibrate in the first mode, normal 
to the flow. An analysis is given of the effects on the vortex 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS and presented at the Fluids Engineering Conference, 
Houston, Texas, June 20-22, 1983. Manuscript received by the Fluids 
Engineering Division, February 11, 1983. 

shedding and synchronization phenomena that are generated 
by the noncircular helical cross section and by the placement 
of distributions of spherical bluff body shapes along the span 
of the cable in uniform and sheared flow. The effectiveness of 
these spheres as strumming-suppression devices is evaluated in 
light of this analysis. 

The spheres were 1.5 in. (3.81 cm) diameter ping pong balls. 
They were chosen because their negligible mass did not affect 
significantly the vibration amplitude and frequency. Since the 
spheres were massless, their effects on the synchronized 
vortex shedding would be due solely to changes in the near 
wake flow created by their presence. 

Background 

Since the cable system employed in the present tests was too 
highly damped to be self-excited in an air flow, forced ex
citation was used to simulate the self-excited resonant wake 
conditions in order to study the lock-on induced changes in 
the cable wake. The validity of this approach has been 
examined by Griffin [2] who found that changes in the near 
wake that accompany resonant vortex excited oscillations 
were reproducible from forced, externally-excited oscillations 
when the experimental conditions were carefully duplicated. 
This method also had the advantage that the amplitude of 
vibration, and the natural frequency and mode shape, could 
be varied independently. 

Observations of, and measurements of wake velocity 
profiles, wake spectra, and flow visualization studies led 
Ramberg and Griffin [9-11] to define three distinct flow 
regimes along the vibrating cable span in a uniform flow. The 
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Fig. 1 Wind tunnel test section and cable model (top view) 

first region was the flow in the immediate vicinity of a cable 
node which closely resembled that past a stationary body. A 
transition region was identified which was adjacent to the 
cable node region and which extended to the cable antinode 
region where the vortex shedding had locked-on to the cable 
vibration. The third region occurred in the vicinity of the 
cable antinode where the vortex shedding was highly 
correlated along the span and the power spectra contained a 
sharp peak at the synchronization frequency. The spanwise 
extent of this region could be closely approximated by the 
lock-on regions previously found for rigid cylinders [4, 13]. 

Results dealing with the wake flow behind a stationary 
bluff body in a linear shear flow have been published by 
Peltzer and Rooney [7], Woo et al. [14], Mair and Stansby [5], 
Stansby [13] and Maull and Young [6]. Linear shear flows are 
characterized by the nondimensional shear parameter f3 = 
d/Uc (dU/dy). Both Maull and Young, and Mair and Stansby 
have examined the effect of a sheared flow on the spanwise 
distribution of the vortex shedding frequency for small aspect 
ratio bluff bodies (Lid < 20). They found that a number of 
coherent cells of constant shedding frequency were present 
along the span of their models for Reynolds numbers less than 
2.0 x 104. Flow visualization photographs taken by Maull 
and Young indicated that the cells were separated by cross-
stream vortices aligned with the free stream direction. Both 
Woo et al. and Peltzer [7] have shown that the length of the 
discrete cells in a sheared flow varied inversely with the shear 
parameter /3. For high aspect ratio cylinders (Lid > 27), 
Woo's results showed that some type of cellular vortex 
structure could exist in the wake of a cylinder up to Reynolds 
numbers of approximately 104. 

The work by Stansby represented the only previous ex
perimental study dealing with the wake properties behind a 
vibrating rigid cylinder in a sheared flow. The vortex shedding 
frequency locked-on to the cylinder vibration frequency, as 
well as to subharmonics of it, over a portion of the cylinder 
span. The balance of the cells that were not "captured" 
became very stable at other frequencies i.e., the spanwise 
shedding structure became very well defined. 

Woo et al. [14] studied the vortex wakes of oscillating 
cables in a linear shear flow. They found that the body 

oscillations induced vortices which were in perfect syn
chronization with the body motion, and that the strength of 
these vortices was amplified. The unforced cells adjacent to 
the lock-on region were again stabilized, and the frequency of 
the shedding in these cells was forced away from that value 
corresponding to the stationary cable shedding frequency (in a 
sheared flow). 

Efforts have been made [3] to reduce cable strumming by 
attaching strumming-suppression devices that alter the 
formation of vortices by changing the near wake flow about 
the cable, to the cable. These devices suppress the strumming 
by breaking down the vortex shedding coherence, and/or by 
increasing the vortex formation length (delaying the vortex 
formation), and/or by increasing the viscous damping 
characteristics of the cable. An excellent summary of 
strumming suppression devices and their effectiveness is also 
given in reference [3]. 

The results that are presented in this paper are part of a 
wider-ranging study [8] which also dealt with the effects that 
forced vibration and the helically-wound cross section have 
on the vortex formation length, shedding frequency, vortex 
strength, reduced velocity and wake width in uniform flow. 
The mean Strouhal number of the nonvibrating cable was 
constant throughout the Reynolds number range 2.0 x 103 to 
4.0 x 104 at the value St = 0.192. The helical cross section of 
the cable lengthened the vortex formation region by as much 
as thirty-three percent when compared to circular cross 
section cable values. The synchronized vibration caused 
significant changes in the near wake development in uniform 
flow. As the vibration amplitude along the span of the cable 
increased locally, the formation length increased and the 
vortex strength, shedding frequency and Strouhal numbers 
decreased. 

The Wind Tunnel and Measuring Systems 

The present experiments were conducted in the 8.5m long, 
1.8m square test section of the VPI&SU subsonic stability 
wind tunnel. An upstream velocity shear was generated in the 
tunnel by a series of six wire screens, incorporating vertical 
rods in a nonuniform cross-tunnel distribution. The screens 
could be arranged in any combination to produce a variety of 
free-stream shear levels, (3 = d/Uc (dll/dy). An electronically 
controlled three-dimensional traverse was available to 
transport the measuring instruments in the vertical (x), 
spanwise (y), or streamwise (z) directions. Figure 1 shows a 
diagram of the wind tunnel test section including the cable 
model. 

The cable that was used in the tests is constructed of seven 
strands of Kevlar synthetic fiber rope, wound around each 
other helically, and wrapped with a polyurethane jacket. The 
noncircular cross section has a 1.143 cm measured mean 
diameter over the jacket. The aspect ratio of the cable, which 
was securely pinned at the endplates, was Lid = 107. The 
cable tension was adjusted with the turnbuckles and measured 
by a Strainsert Universal Flat Load Cell. The small dc motor 
with an eccentrically located mass was attached to the cable in 
order to excite the lower vibration modes by varying the 
motor speed and cable tension. The cable mode shape, 
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Fig. 2 Cable mode shape (first mode) 

vibration amplitude, and frequency were obtained using a 
Physitech Electro-Optical Auto-Collimator Tracking Unit. 
The optical head was mounted on the traverse downstream of 
the cable, and focused on the top edge of the cable which had 
an incandescent light source placed upstream of it to give a 
clear edge for tacking. Details of the cable vibration 
measuring procedure are given by Peltzer [8]. 

To examine the vortex shedding characteristics in the near 
wake of the cable, a straight hot wire probe was attached to 
the traverse and positioned in the cable wake at a position 
where the strongest vortex shedding occurred (x/d = 0.92, 
z/d = 3.5). The probe was connected to a TSI Model 1050 
Constant Temperature Anemometer module. The output 
signal from the anemometer was also band-pass filtered and 
sent to the ZTL FFT processor. 

The experiment was designed to measure the flow 
properties in the near wake of a flexible cable forced to 
vibrate in the first mode. The nondimensional first mode 
shape is shown in Fig. 2. The absolute value of «/amax was 
plotted against the spanwise location (y/d) along the cable. 
The mode shape was invariant with peak to peak vibration 
amplitude, amax/d. The measured values of the vibration 
amplitude (a) along the span of the cable were accurate to 
within ± 4 percent, which was the overall accuracy of the 
Physitech/rms meter measuring arrangement. 

Results and Discussion 

The spanwise power-spectral data are plotted here as 
Strouhal numbers based on the centerline velocity, Stc = 
fcsvd/Uc, versus the spanwise position, y/d. The data were 
presented in this manner to elucidate the spanwise cellular 
structure of the shedding frequency, whenever it existed. A 
single closed circle on these plots represents a narrow band 
shedding frequency peak on the power spectra. A closed circle 
connected to a bar represents a high energy narrow band 
shedding peak with a lower energy wide band to either side of 
the peak, and a bar represents a wide, broad-banded peak 
with no dominant high energy shedding peak present. The 
Strouhal numbers in the plots are accurate to within ±2.0 
percent. 

The Stationary Bare Cable. The Strouhal numbers in the 
near wake of the stationary cable at Rec = 2.96 x 103, are 
plotted in Fig. 3. A definite spanwise cellular structure was 
evident, where the frequency peaks within each of these cells 
were generally sharp and narrow-banded. At the boundaries 
between some cells, the spectra were broad-banded with no 
dominant shedding frequency or they exhibited the two 
distinct frequencies associated with the individual cells. The 
fluctuating cell boundaries, when averaged twenty times 
during the two minute data record, allowed the contribution 
from both cells to be included in the spectral average. 
Depending on how rapidly the cell boundaries were fluc
tuating, the power spectrum was either broad-banded or 
showed the two distinct frequency peaks. Not including end 
cells, there were ten cells of constant Strouhal number along 
the cable span, ranging in length from eight to eighteen 
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diameters. The average length of these cells was eleven 
diameters. 

The Vibrating Bare Cable. The Strouhal numbers 
corresponding to the vibrating cable spectra, with amax/d = 
0.291 and Rec = 2.96 x 103, are shown in Fig. 4. The already 
complicated cellular structure of the vortex shedding along 
the cable in a sheared flow (Fig. 3) is further complicated by 
the synchronized vibration and the local changes in the 
formation length, vortex strength, vortex shedding frequency 
and Strouhal number that accompany the local vibration 
amplitude variation along the span of the flexible cable. A 
definite spanwise cellular structure in the shedding frequency 
was present along the cable. The spanwise power spectra in 
the synchronization region, centered near the cable antinode 
between y/d = -14 .0 and y/d = 30.0 contained a sharp, 
high energy peak at the synchronization frequency. The length 
of this region is dependent upon the vibration amplitude, as 
well as the shear parameter jS and the natural frequency. In 
the locked-on region, the fluctuating lift force created by the 
alternately shed vortices is in phase with the oscillatory 
velocity of the cable. The resonant amplitude dies out 
completely when the two frequencies can no longer act in 
unison. The vortex shedding frequency then jumps to a value 
close to that governed by the usual Strouhal relationship [12], 

The forty-four diameter length of the locked-on cell was 
greater than the thirty-eight diameter length associated with 
the vibration amplitude, amax/d = 0.233, Rec = 2.6 X 103, 
since the length of the locked-on region increased with 
vibration amplitude. This increase has been documented by 
Koopmann [4], Stansby [12], and Peltzer [8]. The average 
length of the unforced cells adjacent to the locked-on region 
was fourteen diameters, nearly equivalent to the 13.5 diameter 
length associated with the vibrating cable results at amax/d = 
0.233, and significantly larger than the average length of 
eleven diameters found along the nonvibrating cable span. 
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The boundaries between cells were marked by discontinuous 
spatial jumps in Strouhal number. In both the vibrating cable 
results, the synchronized vibrations stabilized the general 
cellular structure and eliminated the fluctuating boundary 
effects. Stansby [13] and Woo et al. [14] also noted this 
stabilization. 

The Strouhal numbers of the cells adjacent to the locked-on 
region were nearly equivalent to the stationary cable values. 
The shedding in these adjacent cells was intermittent between 
forced and unforced, characteristic of the transition region 
observed by Ramberg and Griffin [9-11] along the span of 
their vibrating, flexible cable in a uniform flow. This result 
was consistent with one of the observations listed by Sarpkaya 
[12] in his summary of the primary consequences of syn
chronized shedding. He noted that at the end of the lock-on 
range the vortex shedding frequency jumped to a value 
governed by the Strouhal relationship. 

The Stationary Cable, Five Spheres. The Strouhal 
numbers along the stationary cable with five spheres at 
spanwise locations y/d = - 4 0 , - 2 0 , 0, 20, 40 are shown in 
Fig. 5. The Strouhal number (shedding frequency) of the 
spheres, based on the centerline velocity, increased propor
tionally to the velocity across the span. The sphere vortex 
wakes significantly influenced the cable vortex wake for six 
cable diameters, i.e., ± three diameters from the center of the 
spheres. Between the shedding cells downstream of the 
spheres, the cable shedding frequency peaks on the power 
spectra were generally more broad-banded than the narrow-
banded high energy peaks that were characteristic of the bare 
cable spectra. The highly three-dimensional turbulent wakes 
of the spheres disrupted the cellular shedding pattern nor
mally present in the bare cable wake and broadened the 
shedding peaks with the increased turbulent energy they 
imparted to the cable wake. Not including the two end cells, 
four cable shedding frequency cells with an average length of 
fourteen diameters, separated by five sphere shedding cells 
with an average length of six diameters, were located along 
the entire cable span. 

The cable shedding frequencies between the spheres were 
generally forced into discrete cells, the exception being the cell 
centered around y/d = - 10. The spheres act like individual 
endplates, splitting the high aspect ratio cable into six small 
aspect ratio segments. It has been established [5] that for a 
constant shear level the number and length of discrete cells 
present in the wake of cylinders with aspect ratios less than 
twenty is dependent upon the aspect ratio and the type of end 
effects present. The average length of the cells along the span 
of the cable with no spheres was eleven diameters. The 
shedding between the spheres was forced into single- discrete 
cells, fourteen diameters long, by the combination of small 
aspect ratio effects and the added turbulence contributed by 
the spherical endplates. 
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The Vibrating Cable, Five Spheres. The cable with the 
five spheres attached was vibrated in the first mode (amax/d = 
0.233). The spanwise Strouhal numbers are shown in Fig. 6. 
The cable vortex shedding frequency power spectra in the 
regions separated by the spheres were again slightly broad-
banded. The three central spheres (y/d = - 2 0 , 0, 20) locked 
on to a submultiple of the cable vibration, fss„/fc„ = 1/2. The 
presence of the spheres had a significant effect on the length 
of the lock-on region. The lock-on region extended from y/d 
= -24 .0 to y/d = 29.0 (fifty-three diameters), compared to 
forty-four diameters on the bare vibrating cable with amax/d 
= 0.291, and thirty-eight diameters on the bare vibrating 
cable with ama%/d = 0.233. 

It was shown in Fig. 4 that the shedding was locked on to 
the vibration between y/d = 0.0 and y/d = - 14.0, and was 
intermittent between forced and unforced in the region 
between y/d = - 14.0 and//rf = -28 .0 along the span of the 
vibrating cable with no spheres attached. The spheres en
closing the small aspect ratio segment of the cable, y/d = 0.0 
to y/d = -20 .0 , were locked on to a submultiple of the 
vibration frequency. This together with the singular cell 
pattern forced between the spheres enforced the already 
present, highly correlated, synchronized shedding, thereby 
eliminating the intermittent shedding and extending the lock-
on region for ten more diameters. Again, the unforced cells 
adjacent to the locked-on region were intermittent between 
forced and unforced shedding and the Strouhal numbers were 
nearly equal to those found in stationary flow. The extension 
of the length of this locked-on region by as much as forty 
percent was very significant because it meant that the un
desirable effects that accompany synchronization (i.e., large 
amplitude oscillations, increased drag and fluctuating lift 
forces, highly correlated shedding, etc.) extended over a 
longer portion of the cable span. The spheres were ineffective 
in acting as strumming-suppression devices. The increased 
vortex shedding coherence created by their presence actually 
reinforced the strumming. 
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The Stationary Cable, Three Spheres. The number of 
spheres attached to the cable was then reduced to three, and 
the spacing between them increased to twenty-eight diameters. 
The resulting spanwise Strouhal number distribution for flow 
past the stationary cable at Rec = 2.96 x 103 is shown in Fig. 
7. Those cable shedding frequency peaks not directly in the 
regions adjacent to the spheres were narrow-banded like those 
associated with the bare stationary cable frequency peaks. 
The frequency peaks in the cable wake regions adjacent to the 
spheres were again more broad-banded because of the in
fluence of the three-dimensional turbulent wakes of the 
spheres. These three-dimensional turbulent wakes were no 
longer able to exert influence over the entire spanwise distance 
between the spheres. The cable vortex shedding frequencies 
were not forced into discrete cells between the spheres as they 
had been when the spacing was twenty diameters. Across the 
cable span there were seven or eight cells of constant vortex 
shedding frequency, ranging in length from four to eighteen 
diameters, plus the three cells representing the sphere vortex 
shedding frequencies. 

At the shear level of /3 = 0.0053, twenty diameters was the 
maximum spacing that forced the cable shedding frequencies 
between the spheres into discrete cells. Generally, the 
maximum spacing that forced the vortex shedding frequency 
between these discrete bluff body shapes into identifiable cells 
of constant frequency depended on the shear level (3, the 
geometry of the discrete bluff body and the body to which it 
was attached, the flow Reynolds number, and the stability of 
the flow itself. 

The Vibrating Cable, Three Spheres. The cable with the 
three spheres was vibrated {amllx/d = 0.235) in the first mode 
at a Reynolds number of 2.96 x 103. The Strouhal number 
plot is shown in Fig. 8. The vortex shedding was locked on to 
the vibration over the entire spanwise region bounded by the 
spheres, -31 .0 < yld < 30.0 (sixty-one diameters)). The 
three spheres were all locked on to a submultiple of the cable 
vibration frequency, fssu/fcv = 1/2. 

The sphere lock-on enforced the highly correlated, syn
chronized shedding that was already present in the twenty-
eight diameter segment between yld = 0.0 and yld = -28 .0 . 
Again, the synchronized shedding was strengthened enough 
such that the intermittent shedding was eliminated and the 
lock-on region was extended. Again the spheres were inef
fective in acting as strumming-suppression devices. Their 
presence enforced the synchronized shedding. The unforced 
cells adjacent to the lock-on region were intermittent between 
forced and unforced shedding and the Strouhal numbers were 
nearly equivalent to those in unforced shedding. The sixty-one 
diameter locked-on region was fifteen percent longer than the 
fifty-three diameter locked-on region in the five sphere test, 
thirty-nine percent longer than the forty-four diameter 
locked-on range corresponding to the bare vibrating cable 

(amm/d = 0.291), and sixty-one percent longer than the 
thirty-eight diameter range found on the bare cable which was 
vibrated at a comparable amplitude, amax/d = 0.233. The 
spanwise distance between the spheres had a very significant 
effect on the length of the locked-on region. The spanwise 
extent of resonant, vortex-excited oscillations approached the 
half-wavelength of the marine cable in the present study. 

Summary 

The principal results of the present study concerning the 
individual and combined effects of vibration, shear and at
tached spheres on the vortex shedding in the near wake of a 
marine cable can be summarized as follows. 

A small amount of linear shear in the upstream velocity 
profile initiated a strong cellular vortex shedding structure in 
the wake of the helical cross-section cable at the Reynolds 
number considered. The spanwise cellular structure of the 
vortex shedding was stabilized significantly by the vibration, 
and the unlocked cells on the vibrating cable were longer than 
the cells along the span of the stationary cable. The length of 
the locked-on region in sheared flow was vibration-amplitude 
dependent. The presence of and spanwise distance separating 
the spherical bluff bodies along the span of the high aspect 
ratio cable had a significant effect on the spanwise character 
of the vortex shedding structure in the near wake of the 
stationary and synchronized vibrating cable in a shear flow. 

For flow past both the stationary and the vibrating cable 
with the attached spheres, the spheres acted as endplates, 
splitting the high aspect ratio cable into smaller aspect ratio 
segments. The character of the spanwise cellular vortex 
shedding structure was dependent upon the length of these 
smaller segments. The spanwise extent of the resonant, vortex 
excited oscillations was significantly extended by the presence 
of the spheres. The magnitude of this extension was also 
dependent upon the length of the segments between the 
spheres. This finding was particularly significant because it 
meant that the undesirable effects that accompanied syn
chronization would be extended over a longer portion of the 
cable span, up to one-half a wavelength. The spheres did not 
act as strumming suppression devices. The vortex shedding 
coherence created by their presence did not reduce the cable 
strumming. 
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On Liquid Film Pressure Sealing 
The dynamics of the thin film established, by oil injection, on the inside wall of the 
casing in certain rotary compressors are analyzed both experimentally and 
theoretically. The film may provide an effective pressure seal to prevent leakage of 
air from one side of a rotor lobe to the other. It is found that Reynolds' bearing 
theory, corrected for Reynolds number and surface tension effects, gives reasonable 
results for the film thickness needed to sustain typical operational pressure dif
ferences in the machine. The theoretical predictions have been verified ex
perimentally in a series of tests performed in a specially designed apparatus. 

1 Introduction 

To improve the performance of certain screw compressors a 
common technique is to inject oil into the machine in order to 
prevent leakage of compressed air in the fine tolerance 
passages between rotor lobe edges and the casing, or in the 
interaction zones between the intermeshing rotors. 

Because of the rotation of the rotors the injected oil forms a 
thin film primarily on the walls of the casing due to cen
trifugal forces. Under conditions of correctly injected 
amounts of oil the rotor lobes will squeeze the film through 
the smallest gap width between the lobes and the casing wall, 
thereby forming an effective seal preventing the loss of air 
pressure from one side of the lobe to the other. The film 
resists the squeeze through motion by viscous forces which are 
low due to the small areas of contact between lobe edge and 
film. If, however, the film is too thick, the top layer of the 
film cannot be squeezed through by the lobe. A free surface 
wave will then be formed in front of the lobe, causing a much 
increased drag force compared to the viscous forces, Hence, it 
is important to assess an allowable range of film thicknesses 
as a function of appropriate parameters for the proper 
functioning of the machine. 

To do this, an experimental and theoretical study has been 
undertaken. In the theoretical part the film motion has been 
calculated by Reynolds' theory, but corrected for Reynolds 
number and surface tension effects. To verify the theoretical 
results a test apparatus has been built and a series of ex
periments performed. The experimental results support by 
and large the theoretical predictions. 

2 The Film-Lobe Interaction 

The gap size between the lobe edge and casing is of the 
order of 0.1-0.15 mm. Hence all other dimensions of the 
machine such as the rotor radius are large. This justifies a 
two-dimensional approach to the squeeze film problem with 
the flat wall moving with the velocity V„ past the lobe edge, 
see Fig. 1. The pressure differencep2 - Pi (wherep2 > P\) 
over the lobe acts in the same (compressor) or opposite (ex
pander) direction. 

h(x)=6+J 

Fig. 1 Flow situation In lobe fixed coordinates showing detached flow 
at the lobe edge, upstream film thickness (, and upstream flow at
tachment at x = L 

By neglecting inertial effects the motion of the film shown 
in Fig. 1 is assumed to be governed by Reynolds'1 equation, 
i.e., 

d_ 

dx \ a dx J " dx (1) 

The viscous flow (dynamic coefficient of viscosity /i(kg/ms)) 
driven by the pressure gradient dp/dx and the wall velocity 
V„, cause a certain flow rate through the minimum gap height 
h(0) = 5. The question is how this flow rate is related to the 
pressure difference p2 — P\ and the film thickness t ad
vancing with uniform velocity V„ toward the lobe on the far 
upstream side. 

The justification for using equation (1) to study the flow in 
the relatively short interaction zone is, as we shall see, that the 
results of equation (1), properly corrected for Reynolds 
number effects, do correspond well with the observed 
behavior of the flow. 

To analyze the problem a lobe profile is selected 
represented by a parabola with a radius of curvature equal to 
Ru i.e., the local film thickness is 

h(x)=8 + 
2R, 

or, expressed in nondimensional form 

V 
h x 

1 + eij2, where -q = — , £ = — . and e = 2R, 

(2) 

(3) 

Contributed by the Fluids Engineering Division for publication in the JOUR
NAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering 
Division, June 6, 1983. 

Pinkus, O., and Sternlicht, B., Theory of Hydrodynamic Lubrication, 
McGraw-Hill, New York, 1961. 

Journal of Fluids Engineering MARCH 1985, Vol. 107/67 Copyright © 1985 by ASME
  Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Q chosen such that 

'P. " 'Pf 

Fig. 2 Four solutions /0 , / 1 , /2 , and (3 evaluated from three different 
Ap curves corresponding to Q = Qm in , Q i , and Q2. Data chosen Ap( = 
10, t = 0.0119. 

Fig. 3 Thickness r of the film upstream of lobe edge according to the 
different solutions for /, and compared with asymptotic result; f = 
0.0119 

To solve equation (1) boundary conditions are necessary. 
With the assumption of flow separation at the edge £ = 0, the 
pressure at the location £ = 0 is known and equal to p{. 
Reynolds' equation describes a boundary layer type of flow 
and hence variations in pressure over the thickness -t\ of the 
film can be neglected in comparison with the pressure 
variation in the streamwise direction. The pressure p2 acts on 
the lobe front flank and on the surface of the film, but the 
location / = L/8 where the film attaches to the lobe front 
flank is not known. The correct boundary condition is then 

/>« = ') =P 2 (4) 
The Reynolds equation (1) integrated by using equation (2) 

takes the form 

AP(f) = 
; > ( * ) • 

8 

L 1 + 
1 

— j - + - r t a n " '(?v7)] 

L ( i + ( + + ^-tan-'($Vo] (5) 46V„ L(l + e£2)2 ' 2 l+e£ 2 

where Ap(£) is the dimensionless pressure increase along the 
lobe surface with respect to the parameter pV„/8 and where 
C( is an integration constant. At 

£ = / , 4 p ( / ) = 4 p , = 
PI-P\ 

8 

or the total nondimensional pressure difference over the lobe 
the film has to sustain is Ap,. In equation (5) two unknowns, 
Cj and /, are involved which must both be found in order to 
have a fully determined solution. We have 

»/, = l+e / 2 (6) 

and it is clear that ij, > 1 for a proper functioning of the film. 
The constant C, is related to the flow rate in the layer per unit 
edge length. From Reynolds' theory the velocity profile is 
given by the expression2 

"-^-(-i)[!GHi*'H 
and the pressure gradient is obtained as 

dp 

dx 
-6fx 

h2 + h3 (8) 

Idem footnote 1. 

The flow rate in the x direction per unit lobe edge distance is 
thus 

Q=-\"u 
Jo 

(y)dy--
12 

= V„t (9) 

Hence, the pressure gradient according to (8) depends on the 
parameter Q. Therefore, a whole range of Q values for the 
same value of Ap, can be found, representing different flow 
patterns through the channel. This situation comes about 
because the Ap(£) function attains a maximum value at the 
location 

h = h0 
6V„ 

2Q 
(10) 

Hence, by making the corresponding maximum value of 
Ap(£) equal to Ap, at the location £ = /0 we have established 
a lower limit for Q needed to sustain the total pressure dif
ference over the layer, see Fig. 2. Hence, by substituting (10) 
into (5) and puting £ = l0 we obtain a transcendental equation 
determining l0 or ri, fixing the lowest possible flow rate 
through the layer 

Qmin = yivlJV„ = tQv„ (11) 
By a slight increase in the Qmin value according to (11), the 
Ap(£) curve is shifted upwards from the Qmin distribution, 
and the Ap, = constant line may then intersect the new curve 
characterized by Q = Q\ at two locations which we label /[ 
and l2 respectively, see Fig. 2. However, the range of Q for 
which two solutions can be found is limited. This depends on 
the fact that the Ap(£) function attains an asymptotic value 
for large £ values, i.e., 

Ap{t)=Ap„ = 
{-co 

3ir Ct 

2~Ve 48K, 

3ir 
(12) 

Hence, if Q is increased beyond the limiting value 
corresponding to Ap^ = Ap, only one intersection /3 between 
the line Ap, = constant and the Ap(£) curve characterized by 
Q = Q2 can be found, see Fig. 2. 

At the attachment point / = l0 the velocity profile is linear, 
which follows from the concurrence of Ap, with the A/?(£) 
curve maximum. 

The flow configuration for / > /0 means velocity profiles 
that become concave with respect to the linear profile. A 
position is first attained where 

dU 

<i) 
= 0 fory = h (13) 

This condition is tantamount to no wall friction at / = /) if Q 
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> Qi. In other words, / = lx corresponds to a film thickness 
upstream which is determined from the condition (3) giving 

tx 1 

T-31"' (14) 

If Q > Q\» t > tx and the top part of the layer is deflected 
upstream, provided we obtain a solution branch characterized 
by the condition l>l0. Several other types of flow are found 
on the branch of solutions characterized by / < /0. The first 
solution of this branch is / = /2, which corresponds to another 
attachment point only for the flow obtained with Q = Q\. 
Hence, the far upstream flow film thickness is again given by 
(14) and the velocity profile at / = l2 is convex with respect to 
the linear profile. 

Yet another solution of this branch / < lQ can be envisaged 
corresponding to Q2 > Qt > Qmia and is designated l3. At 
this entrance location the film thickness ?3 8 ~' far upstream is 
exactly equal to T//3 . Even higher flow rates Qm > Q2 would 
correspond to / > r/, hence to t > 5 as Ap, — 0 which is not 
possible. Hence, the maximum flow rate in the layer is given 
bye = g2. 

However, it is not possible to draw a precise conclusion 
from our simple theory which one of our two dynamically 
possible solution branches / > l0 or / < l0 will be the only 

a+da i 
dh I 

Fig. 4 Free surface film element for establishing force balance 

~y 

T-2. 

IJMO 

length of S 

Fig. 5 Integrating free surface shape; T = 2 and nVnly = 2 

possible one under a given set of conditions. This has to do 
with surface tension phenomena. In fact, the condition for a 
stable attachment point is given by the condition3 

i(£+"*.-'*)«> (15) 

where d/dx is the streamwise derivative, R is the radius of 
curvature of the free film surface, and y the surface tension. 
In our problem an attachment point of the lx type will be 
structurally unstable since pair is constant and the streamwise 
derivative of the pressure and the inverse radius of curvature 
of the free film surface are both positive. Hence we can 
conclude from a simple stability argument that the solution 
branch cannot materialize. 

For small values of Q, i.e., small values of Ap, the change 
in film thickness / predicted by all four solutions differs 
considerably. However, for large values of Ap, all four 
solutions become essentially the same with only a few percent 
difference, see Fig. 3. This has to do with the fact that Ap^ — 
Ap, as Ap, becomes large. An asymptotic formula for the film 
thickness can then be provided which becomes 

t 4 , 2 
(16) 

3 The Free Film Development 
Upstream of the attachment point the velocity profile in the 

liquid layer is distorted from a parallel to a parabolic shape, 
see Fig. 1, with zero velocity at the attachment point. Since the 
Reynolds theory provides parabolic velocity profiles, we can 
write for the velocity distribution upstream of the attachment 
point 

(17) 

where the function / allows for the film surface to change its 
velocity continuously from zero to - V„, i.e., 

f—1 asx—L 
/—0asx— oo, and u= — Vn 

Furthermore, hL = h(x =L), see Fig. 1. To determine the 

Savage, M. D., "Cavitation in Lubrication. Part I. On Boundary Conditions 
and Cavity-Fluid Interface," Journal of Fluid Mechanics, Vol. 80, Part 4, 1977. 
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Fig. 6 Influence of Reynolds number on the Ap curve; Q2 as in Fig. 2 

Journal of Fluids Engineering MARCH 1985, Vol. 107/69 

Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



function/, equation (9) provides first a relation between/and 
h, i.e., 

/ ( € ) = • 
1 • rq 

(18) 

Next, the momentum balance in the x direction of a small 
liquid element is considered, see Fig. 4. We observe that the 
pressure is constant along the free surface and also across the 
layer (first order analysis). Furthermore, the inertia terms 
likewise give contributions of the second order only. Hence, 
the surface tension force will be balanced only by the viscous 
forces, i.e., 

7sinaG?ct: — ix 
du 

dx = 0 

where 

t a n a = 
dh 

dx 

(19) 

(20) 

By making use of equations (17), (18), and (20), equation (19) 
takes the form 

V 
ixVn 2(3r-ij ,) ( T - I J M I + I / ' 2 ) 3 

i r T J V 
(21) 

This equation can be solved by numerical integration 
proceeding in the negative £ direction by using e.g., the 
Runge-Kutta method, for which initial values are needed. 
These are given as follows: at an arbitrary large value of £, 17 
= T, rj' = 0 and 17" is small. Actually, integration runs with 
•q" = 10 ~2, 10~4 and 10~6 have shown that the initial value 
of 7]" has a negligible influence provided the parameter nV„/y 
< 1. In this case the adjustment region is long in comparison 
with the film thickness and ?/', is also small. However, for 
large values of y]Vn/y the adjustment region is short or of the 
order of the film thickness and hence ??'/ is large. The 
numerical integration is performed for different parameter 
values of rijf' and fiVn/y. The result of such and integration 
is shown in Fig. 5. 

4 Influence of Reynolds Number 

In Reynolds' theory the inertia terms are neglected. Hence, 
Reynolds' theory is applicable for example in bearing 
problems where the Reynolds number based on the smallest 
gap height is of the order of 10"' or less. However, in the 
sealing problem of interest here the Reynolds number based 
on the gap height is much larger, of the order of 10-400, and 
will thus have a considerable influence. Therefore, Reynolds' 
theory needs to be corrected for Reynolds number effects in 
the present application. 

By following the standard procedure in the literature (c.f. 

footnote 1) the effect of the inertia terms will be calculated by 
iteration. Hence, using the continuity equation the y com
ponent of the velocity vector can be computed from the 
known u distribution. We obtain 

where the boundary conditions v(x, 0) = v(x, h) = 0 have 
been observed. Next, a new u distribution can be obtained 
from the momentum equation in which the inertia terms are 
calculated using equations (7) and (22). This gives a lengthy 
expression for u as a function of h and y. To find the 
correction for the pressure gradient the corrected u 
distribution is substituted into equation (9) with the result that 
the correction term in dpldx takes the form 

( 
dp 
dX /corr 

= 6p 
Vih1 

r-i-i-u-^yi (23) 
L 42 70 h 35 V h J J K ' which should be added to the right-hand side of equation (8). 

Finally, to obtain the correction to Ap(l), integration with 
respect to x up to the limit / gives the following correction 
term to Ap 

(Ap)t = Re 
1, 3 
7 " 35 

•Dd-TJ," '»] 
where Re is the Reynolds number defined by 

R e = ^ - 6 

(24) 

(25) 

The Re influence on a typical pressure distribution is shown 
in Fig. 6. As a general result the interaction length for given 
Ap, decreases with an increasing Reynolds number. The 
velocity distribution in the layer is also changed and the 
resulting profiles in the layer for different Reynolds numbers 
are shown in Fig. 7. It follows that T as a function of Ap, is 
also reduced with an increasing Reynolds number, see Fig. 8. 
The results shown indicate that large deviations occur as soon 
as Re is of the order of 10-50 between the iterated solutions 
and the solutions obtained from Reynolds' theory. For this 
reason, the iterated solutions at large Re are at best qualitative 
in nature. 

5 Test Apparatus 

In order to simulate Ap, numbers in the 10-100 range as 
well as Re numbers in the 10-600 range a testbed has been 
designed in which the lobe surfaces are at rest and the 
casing/end walls are rotating. This has the great advantage of 
simplifying the observation and measurement of the flow 
phenomena. In addition, a positive pressure difference on 
either side of the lobe surfaces can be created thus permitting 

Fig. 7 Influence of Reynolds number on the interaction zone length 
and on velocity profiles in the layer; TIVL =0.9andAp( = 100 
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Fig. 8 Calculated influence of Reynolds number on 1 as a function of
JilJt

Fig.9 Test apparatus design concept

the verification and study of the sealing effect. The various
needs for adjustments of gap size as well as chamber and lobe
geometry are easily accommodated in such a design.

The design concept is shown in Fig. 9. The machine consists
of a partially transparent drum rotating around a stationary
central core which includes the simulated lobe tip, a
regulation head and the various fluid feeding channels. The
lobe tip and the regulation head are radially adjustable
through axially moving wedges and delimit two semicylin
drical chambers with different gas pressures. In normal
conditions one chamber is maintained at atmospheric pressure
while the other is fed with compressed air. The liquid is in
jected through the regulation head.

The clearance between the rotor and both the tested lobe tip
and regulating head can be adjusted while the rotor is
rotating.

The rotating drum includes two parts: an external brass
container with window-type openings and an inner cylinder
which is either a transparent plexiglass cylinder to allow for
radial observation of the tested zone, or a solid cylinder for
greater radial accuracy under asymmetrical pressures.
Visualization is also possible through the transparent front
window which rotates with the drum.

A d-c electric motor drives the rotating parts via rubber
belts allowing the speed of rotation to be set at any low value.

6 Test Procedure and Results
Tests have been run with two different kinds of liquid, light

machine oil (fl, ::= 0.05 kg/ms) and a mixture of water and

Journal of Fluids Engineering

Fig. 10 Photograph of the Interaction zone; flow conditions as In Fig.
5

glycerine (fl, ::= 0.01 kg/ms. By changing the liquid viscosity
the testing at two different Reynolds number regimes, 18 <
Re < 77 and 375 < Re < 645 was made possible. During the
running of the tests the temperature evolution of the liquid
was continuously checked for a correct determination of fl,.

Maximum temperature increase was limited to I .5 0 C allowing
the fl, value to be determined within a 10 percent accuracy
limit.

The minimum speed Vll of the drum was found to be about
1.4 m/s. At even lower speeds film inhomogeneities upstream
of the interaction zone were observed. The drum speed was
recorded by a magnetic rpm counter, minimum rpm used 
200, which corresponds to a centrifugal acceleration of 28
m/s2 of the film. Although various gap sizes could be ac
commodated in the machine a value of 8 = 0.65 mm was
chosen and judged sufficient for macrophotography of the
interaction zone.
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Fig. 11 Measured influence of Reynolds number on T as a function of 
Ap ( . Conditions are the same as in Fig. 8. 

The pressure in the two chambers was recorded by a Betz-
type Hg manometer. 

The required film thickness for complete sealing at a given 
Apt value was obtained in the following way. The machine 
was first prepared to simulate a certain Re number domain. 
Then the liquid film generated by fluid injection through the 
regulation head would seal off the two pressurized chambers, 
allowing for application of a desired pressure difference. 
Normally the film slowly reduced its thickness by fluid 
leakage through the low-pressure air tube. At some moment 
the film thickness would have been diminished to such an 
extent that film beakdown would have occurred. To measure 
the film thickness a series of photos of the film interaction 
zone was taken at the moment that stable conditions were 
observed. An example of such a photo is provided in Fig. 10. 

The results of the measurements are shown in Fig. 11 for 
the two Reynolds number domains and for Ap, values up to 
150. Conservative error estimates on every measured point are 
indicated by small arrows. The agreement between theory and 
experiment is demonstrated indicating much reduced film 
thicknesses in the higher Re domain, as shown in Fig. 8. 
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On the Stability of Vortex Motions 
in Compressible Stratified Fluids 
Necessary conditions for the stability of a general class of compressible vortex flows 
are obtained using the method of generalized progressing wave expansion. The 
vortex motion and the density are assumed to vary in both the radial and axial 
directions. These conditions, representing a generalized state of statically stable 
distribution for the steady flow, require that the flow be stable in the centrifugal 
force field created by the rotation of the fluids, in the gravitational force field arisen 
from the density variation, and in the pressure field constraining the variation of 
density and forces in both the radial and axial directions. These results also suggest 
the likely behavior of Richardson criteria for stability of the flow yet to be derived. 

Introduction 
Vortex shedding behind an axisymmetric body submerged 

in stratified fluids has been puzzling many researchers because 
of the intrinsic vortex pattern developed in the late wake [1]. 
When an axisymmetric body is towed through a stratified 
fluid at a particular Reynolds number, vortices are first shed 
three dimensionally. However, the gravitational effects soon 
inhibit the vertical motion. The resultant vortex structure is 
vertically oriented and resembles the two-dimensional Kar-
man vortex street behind a bluff body if observed from the 
gravitational direction. Such inhibition can qualitatively be 
viewed by examining the motion of fluid particles in the 
gravitational force field. When a sphere is towed through a 
stratified fluid, the fluid particles in four locations are of 
particular interest. Figures 1(a) and \{b), respectively, show 
the top view and side view of the sphere and of the four fluid 
particles A, B, C, and D being considered. Since the fluid is 
stably stratified in the vertical direction, the densities of 
particles A and B are equal while the density of particle C is 
lighter than that of particle D. To create a rotational motion 
at the onset of shedding means that either particles A and B or 
particles C and D have to interchange their positions. The 
interchange of particles A and B requires no work done in the 
gravitational force field. The interchange of particles C and 
D, however, requires a work done equal to the increase of the 
potential energy at the new location. Accordingly, nature will 
take an easy way. With the vertical motion suppressed by the 
gravitational forces, the resultant vortex motion will be 
confined in a relatively two-dimensional motion reminiscent 
of the Karman vortex street behind an infinitively long 
cylinder when viewed in the vertical direction. 

To understand the behavior of such vortex motions, we 
need to consider mathematically flow profiles of a more 
general nature to describe this kind of flow patterns. In the 
present investigation, we consider a general class of com
pressible vortex flows with their steady state distributions 

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting, New Orleans, La., December 9-14, 1984, of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids 
Engineering Division, July 27, 1983. Paper No. 84-WA/FE-4. 

depending on the radial and axial coordinate. All dissipation 
effects are disregarded. Necessary conditions for stability of 
the flows are derived by using the method of generalized 
progressing wave expansion as the one used by Eckhoff and 
Storesletter [2], These conditions can be interpreted by a 
kinetic energy approach similar to the one used by Rayleigh 
[3] and by a work done approach based on the movement of 
fluid particles in the centrifugal and gravitational force fields. 
A constraint relation, required to satisfy the pressure balance 
condition at all points within the flow domain, may be 

Fig. 1(a) Top view of a sphere towed in a stably stratified fluid 

Fig. 1 (b) Side view of a sphere towed in a stably stratified fluid 
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responsible for the variation or redistribution of the density 
and for the special vortex pattern developed in the stratified 
late wake behind a towed sphere [4]. 

Governing Equations 

Consider an isentropic vortex motion having the axis of 
symmetry aligned with the z-axis of a cylindrical coordinate 
(/•, 6, z) and with the direction of gravity. The fluid, rotating 
at an angular velocity U(r,z) and having a density p0{r,z), is 
assumed to be compressible but inviscid. To satisfy the 
pressure balance condition anywhere within the flow regime, 
the constraint equation is 

— (p0rQ2)+lr(p0g)--
dz dr 

0, (1) 

The perturbations of velocity in r, 6, and z directions are, 
respectively, u, v and w while the perturbations of the density 
and pressure are, respectively, p and p. Using the trans
formation Or, 

p=^L(p+p) 
Co 

p = c0p0p, (2) 
where c0 is the velocity of sound, we construct a symmetric 
hyperbolic system for the present flow subject to small 
perturbations as follows: 

dt 
+ A, 

dr 
+A*Te+A 

dz •»] 
where 
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0 
Co 
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0 

0 
n 
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0 

c0/r 
G 
0 

Co 
0 
0 

(3) 

0" 
cQ/r 

0 
0 
n 

Following the method of generalized progressing wave ex
pansion used by Eckhoff and Storesletten [2], we obtain the 
characteristic equation 

detl£1A,+cj2A2 + £3A3-AII=0. (4) 

The characteristic roots of the determinant are given by 

x, =n?2 

X2=n£2+Co»7 (5) 
\ 3 = n £ 2 - C o i j . 

Here £y are components for the orthogonal eigenvectors 
associated with the eigenvalue X, and 

i)=(ti + £/r2 + &Yn (6) 
The eigenvalues X2 and X3 correspond to acoustic solutions 
and will not be discussed any further. The eigenvalue X,, a 
triple root, corresponds to gravity waves and is the main 
concern in this paper. The corresponding ray equations for 
gravity waves are 

tffi = _ 3 X , 
dt dr 

dr 

dt 

~dt 

ax, 

ax, 
W2 
ax, 

=0 
an 

= _ -r- £2 dr 

= n 
^ 2 

dt 
ax, 
ae 

=0 (7) 

an 
dz 

dz _ ax, d%i _ ax3 

dt ~ ~d^~ ~dl ~ ~dz 

with the solutions to these ray equations given by 
an 

*3 

r = r0 

e = d0 + Q(r0,z0)t 

z = z0 

£1 = £ 1 0 ""£2 

£3 = £ 3 0 - £ 2 

dr 

an 
dz 

r0'Z0 

r0^0 

(8) 

where /•„, 0O, z0 and $M (k= 1,2,3) stand for the initial values 
at ? = 0. The amplitude of the leading term of the generalized 

B = 

an 
r— +2n 

dr 

£0^ apo 

Po dr 

rQ 

c0 rQ —+ — 
r 

-2Q 

an 
Tz 

„ _CQ_ 3po g_ 

c0 po dz c0 

0 
co c0 

Nomenclature 

Co 

g_ 
Co 

1 d 

Po dr 
(C0P0)-

rn2 

1 a , ^ S 
— T - ( c 0 P o ) + " 
Po dr c0 

c0 = velocity of sound r,,r2 ,r3 

F = Froude number t 
g = gravitational constant w 

Nr,Nz = Brunt-Varsala frequenc
ies v 

p = pressure perturbation 
Q\ .G2 = locations of fluid par- v0 

tides w 
r = radial coordination 

eigenvectors 
time 
velocity perturbation in 
the radial direction 
velocity perturbation in 
the azimuthal direction 
tangential velocity 
velocity perturbation in 
the axial direction 

wuw2 

z 
e 

\{ , A2 , A3 

? 1 . $ 2 . * 3 

Po(r,z) 
<7l>ff2>tf3 

n(r,z) 

-

= 
= 
= 
= 

= 
= 
= 

work done by fluid 
particles in force fields 
axial coordinate 
azimuthal coordinate 
characteristic roots 
components of eigen
vectors 
density of the fluid 
scalar function 
angular velocity 
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progressing wave expansion for the gravity waves is described 
by 

3 

£ = ! > * ' * (9) 
* = 1 

where ak are scalar functions to be used as dependent 
variables in the transport equations, and rk are orthonormal 
eigenvectors defined by 

T S3 + 
C0 

a32=-2Q«? + [F,-^(rQ)] 

a^ = \Fr ) £i — + ( ^ + — ) — h 
V c0 / r \ c„J r 

rQ2 

c0 
• f l « 3 

where 

£>* 
5 1 

— = - , D* 
dr r 

l-l F i » r 

or r 

r,'AtTm = 

Co dpo^ 
Po 3r 

rQ2 

c0 

for l^m 

a\, for/ = m 

and 
*:= 1,2,3. (10) c, c0 ap0 

°Hk 

The eigenvectors are selected such that 

r i = \ki/r ?3 0 f, OJ/TJ 

r 2 = (0 £, - f c / r - £ 3 0 | /V (11) 

r 3 = l - « i 0 -f3 l2/r OJ/i, 

The transport equations for the flow under consideration are 
given by 

~di £*•[(• A, ^ L + 5 r . 
) ) 

l \ a/- a?! a* 3?,/J Ok 

j =1,2,3 

= A(/)<7. 

(12) 

(13) 

(14) 

Here a=\au a2, a3) and A(?) is a time dependent matrix 
with its elements described by 

Ajk=aiklT)2. 

Here also 

\ c0 / r r 

a12 = [Fz+2Q- y (rQ)]^ ^ + [ 
rQ2 

c0 

° ^ £2 
+ —(/ -OH/M/f l ) — f3 

3z J r 

«,3 =F r £
2 - £>.(rfl) p i + — (rQ)^ 

+ [Fz+D*(rQ)]^^ 

au = - ID'W) - •?- (rQ) - —"U, — 
L dz CnJ /• 

r 

3z r v c 0 / /• 

fl23=Z)*(rtl)£? + ~ > 0 ) + ^ " 
L 3z c0 J 

^?- L 3z 

r2 

(rQ) «i€3 

rfi2 '?? / p- \ 
^ - [ F , - D . ( r O ) ] ^ - ( 2 Q - - 2 - ) { 1 € 

c0 r2 \ c 0 / ' 

Po fc c0 

The transport equations are valid along the rays described by 
equations (8). The stability characteristics of the flow 
governed by partial differential equations (3) are now 
equivalent to those of ordinary differential equations (13) 
evaluated along the rays. 

Stability Characteristics 

The system described by the transport equation (13) is, in 
general, nonautonomous. A stable asymptotic behavior for 
large t will be required in order to have stability for the 
system. For r— e», the non-vanishing elements of matrix A are 

a,3 = [Frx
2 + [Fz + D*(rQ)]xy + y (rQ)y2\) /A 

a23 = [D*(rQ)x2 

« 3 1 = X2 

^ Cn 

dz 

(2fi-f>] 

xy-F^/A 

(15) 

/A 

r , rfi2 

«32 = -2Slx:2+ xy-

where 
c0 

an 
x= yz 

dr 

Co 
-y2\/A 

an 
Yz 

and A=x 2 +y2 

(16) 

The characteristic equation for the eigenvalue X of the non-
autonomous system is 

X(X2 + */A) = 0 

where 

f r n 2 ~) „ r s rQ2 

V = lFr +2QD*(rQ)\x2 - )Fr— -F, 
( . c 0 J t c0 c0 

-2Q^-(rQ)lxy-Fz^y2. 
dz -> c0 

In order that the system with the elements described by 
equations (15) shall be stable, it is necessary that all the 
characteristic roots in equation (16) have nonpositive real 
parts, i.e., 

* > 0 . 

Equation (18) will be satisfied if 

(17) 

rQ2 g 
co c0 

(18) 

(19«) 

and 

-F, 
c0 

rQ2 

Fr +< 
c0 >M^) (196) 

Here 4> — 2QD*(rQ) reduces to the Rayleigh discriminant if the 
azimuthal velocity is radius-dependent only. Since the right-
hand side of equation (196) is always positive, conditions (19) 
require 
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( ! - ) : 

L p0 dz V c0 / J 

(20a) O 

(206) 

and 

[~^(t)2H*-(?n 
Vrfl2/ L po dr 

/ r f i 2 -Q2 \ 2 r 

c0 / J 
(20c) 

Here 

$ = 
rfi2 

+ < >= —(p 0 r 4 0 2 ) /Po ' J 

9/-
3po 

Po dr 

reduces to the Rayleigh-Synge discriminant if the flow 
quantities are dependent only on the radius. It represents the 
variations of centrifugal forces that arise from the variation 
of density and that result from the conservation of circulation 
in the radial direction. 

For uniform rotation, no criteria can be observed since 
equation (18) will become trivial. In this case, system (13) 
becomes autonomous, since dQ/dr = dQ/dz = 0, and the ray 
equations (8) for autonomy reduce to 

£* = £*o £ = 1 , 2 , 3 (21) 

The eigenvalues X of system (13) are now governed by the 
equation 

MX2+ */ (& + & + &)]= o (22) 

where 

+=(F, 
r®2 , \ , / g rU2 

+ 4 0 2 U 2 - ( F , - 2 - - F , )?ioS 

i)(¥) 
c0 / v c0 c0 

-Fz — &+(Fr 
c0 v c0 c0 

To have system (13) be autonomous and stable, it is required 
that the eigenvalues have nonpositive real parts, i.e., 

\f->0. (23) 

Since £10, £2o> a n d £30 a r e independent components of the 
orthonormal eigenvectors, stability of the system of equations 
(13) for autonomy therefore requires that 

rU2 dPo ( rtt2 \ 2 

Po dr \ c0 
:0 (24a) 

:0 . (246) 
I p0 dz Vc0 / J 

Equations (20) and (24) represent the stability conditions of 
the system in equations (13) for both nonautonomous and 
autonomous cases, respectively. The stability characteristics 
of the flow governed by the partial differential equation (3) 
are equivalent to those of the system governed by the ordinary 
differential equation (13) evaluated along the rays. Therefore, 
one can conclude that the necessary conditions for stability of 
the compressible stratified flows under consideration require 
the inequalities 

A^ + 0>O 

A^>0 

(N2 + <j>)N2
z>NA

r/F
2 

to be satisfied anywhere within the flow regime. 
Brunt-Varsala frequencies are defined as 

rU2 dpQ _(rQ2\'2 

Po dr V c0 / 
N2 = 

(25a) 

(25b) 

(25c) 

Here the 

(26«) 

Q2(r+Ar,z+6z) 

Q^r.zl 

Fig. 2 Coordinate of the fluid particles in the centrifugal and 
gravitational force fields 

Nl-
g dp0 -(£): (266) 

to, respectively, represent the density variations along the 
radial and gravitational force fields. The Froude number is 
defined as 

rQ2 

F= (27) 
g 

to represent the ratio between the centrifugal and 
gravitational forces. Equation (25ff) will be replaced by A^ > 0 
for uniformly rotating flows. It is worth mentioning that 
equations (25) actually do not represent three independent 
conditions. Condition (25c) implies that either one of the two 
conditions in (25a) and (256) must be automatically satisfied 
if the other one is satisfied. This behavior as well as the 
physical mechanism behind the three conditions will be ex
plained in the following section. 

Interpretation of the Results 

The necessary conditions for stability previously derived 
can be explained by a kinetic energy approach similar to the 
one used by Rayleigh [3] and by a work done approach based 
on the movement of fluid particles in the centrifugal and 
gravitational force fields. For simplicity, compressibility 
effects will be ignored. 

Consider two fluid particles originally located at Qx and Q2 

within the flow regime in the r-z plane as illustrated in Fig. 2. 
The particle at Qt has a density p0 and a velocity v0 while the 
particle at Q2 has a density p0 + 5po and a velocity v0 + 5v0. 
Here v0 = rfi and 

3 d 

dr dz 

First we use the energy approach by considering the variation 
of the total energy as a result of a perturbation to the system. 
In the steady-state, the kinetic and potential energy of the two 
particles are given by 

K.E. 
1 

i PoVo + (Po + 5po)(vQ + 8v0)
2 ) 

and (28) 

P.E. pQgz+(Po + 8po)g(z + 5z). 
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When the two particles interchange their positions, the kinetic 
and the potential energy of the perturbed system are 

K.E. 
-r+brl 

+ (Po + ^Po) 
(r + 8r)(v0+8v0) 

and (29) 

P.E. p0g(z + 8z) + (pQ + 8p0)gz. 

Here the conservation of circulation has been applied to the 
resultant kinetic energy in (29). If the perturbation is small, 
the stability of the system requires 

g_ 3po 
*(5/-)2 

1 'J 

— T - (P0M
2) 

Po oz 
( & • ) ( & ) 

S dpo (&) 2 >0 (30) 
Po dz 

everywhere within the flow domain. 
An alternative approach to observe the stability charac

teristics of the system is to examine the work done by the two 
particles in the centrifugal and gravitational force fields. 
When the two particles interchange their positions, the work 
done by the particle originally located at Qx is 

l- + T^}8r+^ (31) 

<- r (r+8rY-> 
r (r+Sr)3-

while the work done by the particle originally located at Q2 is 

PO + SPO f (v0 + 8v0)
2 

W2 = -

+ 

2 I (r+8r) 

[(r+8r)(v0 + 8v0)]
2-

8r- (p0 + 8p0)g8z. (32) 

Condition (30) can be reached following the argument that the 
stability of the system requires the leading terms of the total 
work done by the interchange of the two particles to be non-
negative, i.e., 

Wl + W2 = ~8[p0r
2vl]8r+8(pog)5z^0. (33) 

r 
The physical meaning of the necessary condition for 

stability derived by the method of generalized progressing 
wave expansion can be seen immediately if one compares 
equation (18) with equation (30) or (33). Equation (18) for 
incompressible fluids reduces to 

<Yr) 
g_ 8po_ 
Pa dr 

1 

Po dz I <"«](£)( 
dQ\ 

Tz) 

p0 dz J V dz ) 
>0. (34) 

Equations (30) and (34) are identical if one matches dQ/dr 
with 8r and dQ/dz with 8z. If the variation in the axial 
direction is restrained, equations (30) and (34) reduce to the 
well-known Rayleigh-Synge criterion [5], which is a 
requirement for centrifugal stability. Also it can be easily 
shown, by the same integral method used by Fung [6], that the 
first term in equations (30) or (34) is in fact a differential 
representation of a stable centrifugal force field. This 
mechanism is reflected in equation (25a) saying that the steady 
state of the flow should be stable in the radial direction. Two 
parts are involved in this first term. The first part is the 
variation of density in the centrifugal force field. The second 
part is the Rayleigh discriminant representing a variation of 
the centrifugal balance constrained by the conservation of 
circulation. 

If the variation in the radial direction is suppressed, 
equations (30) and (34) reduce to a condition representing the 
variation of density in the gravitational force field. This 
mechanism is reflected in (25Z?) saying that the steady state of 
density should be statically stable in the axial direction. 

The second term in equations (30) and (34) represents the 
cross correlation between the radial and axial variations of the 
density in the centrifugal and gravitational force fields. This 
variation is reflected in condition (25c) with a mechanism to 
be immediately revealed. For incompressible flows, equation 
(25c) reduces to 

(35) 

which represents a requirement for stability imposed on the 
density variations in the radial and axial directions. For fixed 
values of the Froude number, the density variation in the 
radial direction, as compared to that in the axial direction, 
plays an opposite role in flow stability. While large density 
gradients (negative) in the axial direction stabilize the flow as 
in the case of two dimensional stratified fluids in a 
gravitational force field, large density gradients (positive) in 
the radial direction destabilize the flow. This is opposite to the 
role played by density gradients in radius-dependent rotating 
flows, and seems to be implausible at the first look. However, 
this is also an interesting point that reveals the physical 
mechanism carried by equations (25c) and (35). For potential 
flows, both equations (1) and (35) reduce to 

* \ 

rQ2 dp0 

Po dr ' 

dp0 

\ dz 1 

/ 9PO ~ F' 
dr 

3po/dPo _ / t f 
dr I dz g 

(36) 

saying that the ratio between the density gradient in the radial 
direction and that in the axial direction should be compatible 
with the ratio between the centrifugal force field and the 
gravitational force field. And it is also the constraint con
dition for the pressure balance requires that large density 
gradients (positive) in the radial direction result in large 
negative density gradients in the axial direction for a fixed 
Froude number. 

The arguments just presented for the physical mechanisms 
of the necessary conditions allows us to conclude that 
equations (25) represent a generalized state of statically stable 
profiles for the steady flow. To secure stability for the basic 
flow, it is necessary that the steady-state distribution satisfy 
(a) the radial force balance condition, (b) the axial force 
balance condition, and (c) a pressure balance condition 
constraining the variations of density in both the centrifugal 
and gravitational force fields. As a result of the third con
straint, equations (25) do not represent three independent 
conditions. Either one of the two conditions in (25a) and (256) 
will have to be automatically satisfied if the other condition 
and equation (25c) are fulfilled. 

Conclusions and Discussions 

Necessary conditions of stability for an isentropic com
pressible vortex flow, with the density being stratified in both 
the radial and axial directions, have been derived using the 
method of generalized progressing wave expansion. This 
method transforms a set of partial differential equations into 
a set of ordinary differential equations with equivalent 
stability characteristics evaluated along the rays, thus, 
provides one with a powerful tool to attack a class of steady 
flows with more than one independent variable. The necessary 
conditions derived here represent a generalized state of 
statically stable distribution for the steady flow. They require 
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the flow to satisfy the centrifugal force balance condition, the 
gravitational force balance condition, and the pressure 
balance condition restraining the variation of densities and 
forces in both force fields. 

We have not been successful in obtaining a sufficient 
condition for stability. However, the necessary conditions 
derived suggest that a sufficiency condition for flows with the 
steady distributions varying in both the radial and axial 
directions should satisfy three criteria: («) one in the radial 
direction [7, 8], (b) one in the vertical direction (the classical 
Richardson criterion for 2D parallel flows), and (c) one 
constrained by the pressure relation for the variation of the 
density and for the balance of the two force fields [4]. 

An understanding of the stability criteria for the flow under 
consideration is essential to the vortex motion in the late wake 
behind a towed axisymmetric body. The existence of the 
vertically oriented vortex structure far downstream of the 
wake implies that the vortex motion satisfies some Richardson 
criteria [4]. The stability criteria, if derived, will provide us 
with an insight into the flow characteristics that may be used 

to predict the evolution and breakdown of the vertically 
oriented vortex motion. 
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Similarity Solutions for Plane and 
Radial Jets Using a k - t 
Turbulence Model 
When the eddy viscosity is defined by the standard k-e turbulence model, the 
equations governing self-similar incompressible plane and radial jets have a 
solution that is not analytic at the jet edge. A transformation that stretches the 
similarity variable simplifies the defining set of ordinary differential equations and 
makes them amenable to efficient numerical integration. Highly resolved solutions 
for the velocity, turbulent kinetic energy and dissipation rate profiles are tabulated 
and entrainment, velocity decay rate and growth rate are determined. The growth 
rate differs by 6 percent from a parabolic marching asymptotic solution to the full 
partial differential equations. 

Introduction 

Self similar descriptions of turbulent incompressible jets 
issuing into stagnant surroundings belong to an established 
class of fluid dynamics problems. Simple Prandtl mixing 
length models for the turbulent shear stress have been used to 
produce Goertler or Tollmien type solutions when the eddy 
viscosity is independent of, or dependent upon, the lateral 
coordinate, respectively [1]. Goertler's solutions are infinite in 
lateral extent while Tollmien's solutions possess a finite 
lateral edge but predict a vanishing eddy viscosity at the 
symmetry location. Recent applications of two-equation 
turbulence models to the jet problem [2-5] have produced 
more realistic solutions with a non-vanishing eddy viscosity at 
the symmetry location as well as a finite lateral edge. 

Although Rodi [3] set down the conditions governing self-
similarity, using the two-equation model, the parabolic 
partial differential equations are generally employed and far 
field solutions are approached using numerical marching 
procedures. These techniques introduce a degree of inac
curacy that must be separated from faults due to turbulence 
modeling [6]. Hence, it is desirable to cast the governing 
equations into similarity form and solve them directly thereby 
establishing a standard for comparison. 

In this work the most commonly used of the two-equation 
models, the k-e model [7], is employed to formulate the plane 
and radial jet problems in similarity variables. Plane and 
radial jets are chosen since they both appear to be adequately 
described with the same set of model constants. No attempt is 
made here to evaluate the k-e model's performance with 
respect to experimental data. 

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting, New Orleans, La., December 9-14, 1984 of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids 
Engineering Division, June 27, 1982. Paper No. 84-WA/FE-3. 

An analysis of the set of governing ordinary differential 
equations reveals them to be singular at the jet edge. Such 
behavior was used [4] to generate k-kL model constants; 
however, shooting techniques that were difficult to implement 
[5] were required to solve the equation set. A transformation 
is presented herein that removes the finite edge to infinity and 
decouples the equation system rendering it amenable to ef
ficient numerical solution. Detailed results are tabulated 
which can be used to assess the accuracy of alternate 
numerical approaches to the far field solution. 

Formulation and Analysis 

The high Reynolds number, thin shear layer equations 
governing the turbulent incompressible jet are 
continuity 

~-{UXJ) + —{VXJ) 
bx ay 

-0j = 0, plane jet 
j=l, radial jet 

momentum 
du bu 

bx ay 

turbulent kinetic energy 

= l ( v ? 
du 

(1) 

(2) 

dk dk 

ox ay (-S) + p -i a 
ok by X ' by 

turbulent dissipation 

1 9 

o-E by 
Here u and v are the velocities in the streamwise, x, and 
lateral, y, directions, respectively. The turbulent kinetic 
energy is denoted by k, its dissipation rate by e and its rate of 
production by P, where 

be be 
u—- +v-— 

bx by 
( de 

by)+i^P-

(3) 

Ce2e) (4) 

Journal of Fluids Engineering MARCH 1985, Vol. 107/79 
Copyright © 1985 by ASME

  Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The eddy viscosity, vT, is defined by 

r k" 
e 

Boundary conditions for equations (l)-(4) are 

du dk de 
symmetry plane, y = 0: —— = —— = —- =v = 0 (5a,b,c,d) 

dy dy dy 

jet edge, y=ye: u = k=e = 0. (6a,b,c) 

The only initial condition of consequence for the far field 
solution is the momentum flux constraint from the integration 
of equation (2) across the jet, 

dJ . p ? , 
— =0, J=2xJ\ u2dy. (7) 
dx Jo 

Here J is the kinematic momentum flux per unit width for the 
plane jet, per radian for the radial jet. Model constants [7] 
complete the specification of the problem, 

C„ =0.09,C6l = 1.44,Ce2 = 1.92,(7* = 1,0, = 1.3. 

It is advantageous to define a stream function, \p, where 

3t/- . # 
=uxJ, — = ~vxJ 

dy dx 

and equation (1) is then identically satisfied. 

Let the similarity variable be 

and choose the dimensionless stream function, F(rf), so that 

t(x,v) = Cll
l/2u0(x)* + iF(v) (10) 

The lateral distributions of velocity are evaluated from 
equations (7-10) 

(8a,&) 

(9) 

=F'(V), • = VF'(v)-2J-lF(r,) ("«,&) 

where the primes indicate derivatives with respect to -q. The 
centerline velocity distribution, u0 (x), can be determined 
from equation (7), written in form 

/ 
, ,2V ;+ 1 U0X

J 
-2C W2Y 

" Jo F'2(v)dv (12) 

When the turbulent kinetic energy and dissipation functions 
are expressed as 

G(ri),^=H{V) 
ul 

then equation (2) is easily placed in similarity form, 

G2 / Gz \ 
2J-[(F'2+FF")+(-~~F")'- 0. 

(13a,b) 

(14) 

(15) 

Equation (14) may be integrated once yielding 

G2 

2J~'FF' + — F " = 0 
H 

where symmetry plane boundary conditions require that the 
constant of integration vanishes. 

The similarity form for equations (3) and (4) is achieved in a 
like manner, viz. 

1 / G2 \ G2 

2JF'G + 2J-lFG' + — {j7G')'+ -^F"2-H=0 (16) 
"k H 

1 . , 1 (G2 \ 
- ( 5 + 3y) JF'/ /+2- ' -1F// ' + — ( —: H') '+CelGF" 
2 a, \ H / 

H2 

cE2-^=o (17) 

To apply the boundary conditions (5), (6) to equations 
(15)-(17) recall that equation (5a) is already satisfied by 
equation (15) and that the scaling implied by equation (11a) 
must be fulfilled. Thus, 

symmetry plane: F(0) = G'(0) = H'(0) = 0,F'(0) = 1 

(l&a,b,c,d) 

jet edge: G(Ve)=H(rie) = 0 (I9a,b) 

It is to be noted that the similarity profile shapes are in
dependent of the model constant, C^. The requirement that 
F'(T]e) = 0 (equation 6(a)) is met as a consequence of equations 
(15) and (19) and does not demand the imposition of a 
boundary condition. In addition, the value of r/e is unknown 
and must be determined during the course of the solution. 
Equations (15)-(17), with boundary conditions equations (18) 
and (19), form a highly nonlinear two-point boundary value 
problem which must be solved numerically. The solution of 
this problem is further complicated by the appearance of a 
singularity at the jet edge which is caused by the vanishing of 
the turbulent kinetic energy and its dissipation rate. As a 
consequence it will be shown that the eddy viscosity also 
vanishes at the jet edge. 

The structure of the edge singularity is deduced as follows. 
Define the distance from the jet edge as 

N o m e n c l a t u r e 

a,b,c = exponents (equation (20)) 
A,B,C = coefficients (equation (20)) 
£>,ei,e2 = constants in turbulence model 

F = stream function similarity variable 
G = turbulent kinetic energy similarity variable 
H = dissipation rate similarity variable 
j = index; plane jet 0 = 0), radial jet (J = 1) 
/ = kinematic jet momentum flux per width, per 

radian 
k = turbulent kinetic energy = 

- CiF^+v'2 + w'2) 

1T = turbulent length scale 
P = production of k 
u = streamwise mean velocity 
U = streamwise mean velocity similarity variable 

v 
x 
y 
e 
V 
x 

°k,t 
T 

Subscripts 

o 
1/2 

lateral mean velocity 
streamwise coordinate 
lateral coordinate 
dissipation rate of k 
similarity coordinate = C~W2y/x 
distance from the jet edge = rje — ij 
turbulent eddy viscosity 
transformed similarity coordinate 
diffusion constants in k, e equations 
turbulent shear stress = -u'v' 
stream function 

jet edge 
symmetry plane 
velocity half-width 
edge of computational domain 
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X = i ? e - r ; 

and assume that, to leading order in X, the dependent 
variables can be represented by 

F=Fe-AV,G = B\b, H=C\c;\-0 (20a,b,c) 

where Fe is the edge value of the stream function and each of 
the coefficients and exponents is required to be positive. Also, 
for the stream wise velocity to exhibit the proper decay, a > 1. 

For this behavior to be consistent with the momentum 
balance (equation (15)) requires that 

-IJ-'AaF.X" 
B2 

+ — Aa(a-l)\2"-c+a~2- 0. 

Matching coefficients and exponents reveals 

B2 

( a - 1 ) — =2J-]Fe, 2b-c-\=0. (2\a,b) 

Satisfaction of the turbulent kinetic energy balance 
(equation (16)) dictates that 

2jABa\a+b~] + — ( a+lJX*-' 
C °k 

A2R2 

+ ~^-a2(a-l)2X2"~3- -c\2»- = 0 

where use has been made of equation (21a,b). Two leading 
order exponent possibilities exist, viz. 

(I) 6 = 2 ( a - l ) 
(II) b<2(a-l). 

Possibility (I) is unworkable since it produces an inconsistent 
coefficient balance. That is, 

Bl , / 1 1 \ A2B2 , 

-cb\vk-2)+^ral{a-l)1=Q 

where both terms are positive. Possibility (II) is acceptable 
and the coefficient balance yields 

b = ok(a-\) (22) 

Finally, the dissipation balance (equation (17)) along with 
the relationships of equation (2\a,b) and (22) necessitate that 

-(5 + 3j)aAC\2^-,)+a+ — [ (2 - — W l l 
2 ac LV ak / J 

\W-\) 

C2 

+ C d&4 2a 2(a- l ) 2X 2W 1 / t* + 1 / 2>-1 1-C f 2 — A36~2=0 
B 

where, by inspection, the second term is of leading order and 
its vanishing coefficient determines the value of b. This, and 
equation (216), (22) give 

1 ak a, 
,6 = * ,c=—^— (23a,6,c) 

2ak - cre 2ak - at 2ak - af 
a~\ 

so that equation (21a) becomes 

G2 

H 
= 2J-]{2ak-aJFe\, X - 0 (24) 

This analysis of the standard k-e model in the vicinity of the 
jet edge shows that diffusion of k and e toward the edge is in 
balance with advection toward the jet interior due to the 
entrainment velocity. In addition, equation (23a) assures that 
the streamwise velocity vanishes as the edge is approached. 
Equation (24) predicts that the eddy viscosity increases 
linearly with distance from the edge, its slope given in terms of 
the edge value of the dimensionless stream function. In 
contrast to k-kL models [2]-[4], which incorporate a finite 
turbulent length scale at the jet edge, the k-e model [7] causes 
this scale to decay with the 2/7 power of X, i.e., 

lT = ClMki/2/e ~ \0°'2-°eW°k - " f ) ,X-0 . 

Other consequences of the model are also of interest. The 
velocity, w, is given by 

— =a^X1/(2°*-"e). 
" 0 

The dimensionless shear stress is defined by 

u'v' ,„G2 

—T- = - CY2 — F" 

(25) 

(26a) 

and it must exhibit the same edge behavior as the streamwise 
velocity (equation (15)). Furthermore, the turbulent shear 
stress to kinetic energy ratio is 

\ U -akV(2ir*-C7e) ^ Q 

k 

which reduces to a constant for the model value of a t = 1. 

(266) 

Method of Solution 

The three second order ordinary differential equations 
(equations (15-17)) and their boundary conditions (equations 
(18), (19)) are not in a form particularly amenable to 
numerical solution. Both boundary conditions on the stream 
function of equation (15) are applied at rj = 0. This suggests 
that a better arrangement can be found in terms of two first 
order equations via the introduction of a new dependent 
variable, U, so that 

and 

U=F' 

G2 

2J~]FU+ — U'=Q 
H 

(27) 

(28) 

In addition, the two point boundary value problems for G 
and H (equations (16), (17)) are highly coupled, nonlinear and 
difficult to implement because the jet edge location is 
unknown a priori. Fortunately, a simple transformation of 
the independent variable, viz. ij = ?/(£) where 

d-q G2 f« G2 

eliminates much of these difficulties. Note that, as defined, £ 
= 0 is the symmetry plane, 77 = 0. If the transformation is 
applied to equations (27), (28), (16), and (17) the result is 

G2U 
=Fi (30) H 

2J-xFU+Uf=Q (31) 

(32) 2'F^G + 2j-,FGi + — G„ + 4J-'F2U2 - G 2 = 0 
ak 

^(5 + 3y)F5//+2>-'F// f + —H(i + ~(4'-iCelF
2U2 

-Ct2G
2) = 0 (33) 

where the subscript, £, indicates differentiation with respect 
to £. Of particular note is that the transformation has un
coupled the turbulent kinetic energy, equation (32), from the 
dissipation rate, equation (33), and virtually removed the 
nonlinearities. Equations (30), and (31) can be integrated 
using the boundary conditions (equation I8a,d) to produce 

(•* G 2 

m = \ c ^Udk ( 3 4 ) 
Jo H 

t/(£) = exp(-jo2^'W), (35) 
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and along with equations (32) and (33) they comprise the 
system to be solved numerically. 

Because the lateral dependence of the eddy viscosity is 
embodied in the coordinate transformation the equations 
formulated in the £ variable take on a constant eddy viscosity 
appearance. In fact, the jet edge has been transformed to 
infinity. This is demonstrated by substituting equation (24) 
into equation (29a) to obtain 

d£ 1 

d-q 2J-'(2ok-oc)Fe(Ve-r])' 

Integration yields 

Table 1 Plane jet similarity solution 

£ = -
1 

v-\2ok-
so that £ —oo for rj-
gives 

In X +constant, X—0 (36) 
at)Fe 

-r/f. Using this result in equation (29b) 

V, - J o H 
dk (37) 

which provides an explicit expression for the location of the 
edge of the shear layer. Using equation (36) for £(X) along 
with equation (206,c) and equation (23b,c) establishes the 
asymptotic boundary conditions on G(£), //(£) as the jet edge 
is approached. Namely, 

G(?) = G(£Jexpt2^1<r,F e(£ t -£ ) ] ,£ -oo (38a) 

/ / (£ )=^(£Jexp[2 - ' - 1 a e F c (^ -£) ] ,£-*= (386) 

where £t is an arbitrary constant. These asymptotic forms 
can also be found directly from the transformed equation 
(30)-(33). 

A numerical solution is sought to equations (32)-(35) in the 
domain 0 < £ < £ , where £„ is chosen large enough so that 
equations (38) are applicable for £ > £ , . (Numerical ex
periments determined that £ t — 46/2 / places -q t within 1 
percent of the jet boundary, well into the asymptotic edge 
region.) The second order finite-difference representation of 
equations (32)-(33) is formed by replacing all derivatives by 
their three point central differenced counterparts using a 
uniform mesh. At the symmetry plane (£ = 0) a reflecting 
boundary condition is invoked and at the outer edge of the 
domain G(£„) and / / (£„ ) are related to their corresponding 
values at the neighboring interior point by equation (38). A 
tridiagonal solver is used to find the G(£), //(£) distributions 
and F(£), £/(£) are found from equations (34) and (35) by 
quadrature. This cycle is repeated until the residuals of the 
difference equations for G and H are less than 1 0 " at every 
point. Generally, this tolerance required less than 100 
iterations independent of the number of grid points. 

The numerical solution may be continued analytically into 
the domain £ > £ „ . For example, recasting equation (296) 
g i v e s M* G2 r« G2 

"(Ho ndt+\(. a*-
and, with the use of equation (38) this may be expressed as 

G 2 (£J/7/(£J >)(£) = >?(£,) + U-lFeQ.ok-ay
l 

expiy^Fe(2ak-aeMt-m (39) 

In a like manner, the velocity may be evaluated from equation 
(35), viz 

t / ( £ ) = t / ( £ J e x p [ 2 ^ 1 F e ( £ t - £ ) ] 
£ a £ , (40) 

and the stream function from equation (34), 

G 2 (£ , )£ / (£ , ) /# (£») 
( i 

V~lFe(2ak-at + l) 

exp[2'-1Fe(2<T t-ae + l ) t t , - 8 ] ] 

0,0 
0.55160 
1.10321 
1,65481 
2,15125 
2.70286 
3.19930 
3,69574 
4.19218 
1,68843 
5,18507 
5,62635 
6,12280 
4,61924 
7,06052 
7,50180 
7.99825 
8,49469 
8,93597 
9.43241 
9,92886 
10,42530 
10.92174 
11,41819 
11,96979 
12,52139 
13,12816 
13.73492 
14.3416B 
15,05877 
15,72069 
16,49294 
17,37550 
18.25807 
19.25095 
20,40932 
21.73317 
T'7 njyii 
25!20827 
27,74544 
31.49654 
59,21899 
C O 

0,0 
0,02014 
0,04097 
0.04166 
0,08048 
0,10168 
0,12104 
0.14075 
0.16074 
0.18104 
0.20162 
0.22012 
0,24113 
0.24228 
0.28114 
0.30002 
0,32121 
0.34228 
0.36084 
0.38148 
0,40179 
0,42171 
0,44119 
0,46019 
0,48066 
0.50044 
0.52134 
0.54131 
0,56033 
0,58158 
0.60001 
0,62011 
0,64126 
0,66054 
0,68018 
0,70048 
0.72059 
0.74037 
0.76038 
0,78030 
0,80009 
0.32001 
0,83127 

0.0 
0.02042 
0.04081 
0.06114 
0.07934 
0.09941 
0.11729 
0.13493 
0.15226 
0.14920 
0.18547 
0,19985 
0.21521 
0.22987 
0.24224 
0.25402 
0.24445 
0.27302 
0.28757 
0.29750 
0.30657 
0.3'.482 
0.32228 
0.32900 
0.33564 
0.34149 
0.34709 
0,35190 
0.35603 
0.34012 
0.36324 
0.34426 
0.34898 
0.37109 
0.37290 
0.37442 
0.37542 
0.37653 
0.37719 
0.37763 
0.37788 
0.3779; 
0.37798 

1.00000 
0.99719 
0.98880 
0.97500 
0,95814 
0,93481 
0.91000 
0.88195 
0.85106 
0.81774 
0.78252 
0.74993 
0.71227 
0.47398 
0,43977 
0,40567 
0,54778 
0.53047 
0,49854 
0.44343 
0.43014 
0.39821 
0.34793 
0.33935 
0,30963 
0.28202 
0.25404 
0.22848 
0.20521 
0.18048 
0.16012 
0,13908 
0,11825 
0,10043 
0,03350 
0.06725 
0,05244 
0.03924 
0,02727 
0,01689 
0,00832 
0.00193 
0.0 

0.06567 
0.06596 
0.06478 
0.04808 
0.04954 
0.0713B 
0,07308 
0,07470 
0,07613 
0,07725 
0.07799 
0.07827 
0.07812 
0,07747 
0.07648 
0.07511 
0.07315 
0,07082 
0,06847 
0.06558 
0,06249 
0,05926 
0.05595 
0.05262 
0.04894 
0.04534 
0.04151 
0.03786 
0,03443 
0.03065 
0.02746 
0.02408 
0.02065 
0.01766 
0,01478 
0,01197 
0,00939 
0.00705 
0,00492 
0,00305 
0,00151 
0,00035 
0,0 

0,11647 
0.11723 
0.11945 
0.12290 
0.12477 
0.13151 
0.13577 
0.13965 
0,14279 
0.14492 
0.14580 
0.14544 
0.14348 
0.14055 
0.13468 
0.13192 
0.12546 
0.11867 
0.11201 
0.10422 
0.09631 
0.08844 
0,03076 
0.07338 
0,06562 
0,05841 
0.05115 
0.04461 
0,03877 
0,03274 
0.02793 
0.02314 
0.01842 
0.01494 
0,01148 
0,00874 
0.00428 
0,00427 
0,00264 
0.00140 
0,00055 
0,00008 
0,0 

0,0 
0,31735 
0.60586 

89436 
1,18286 
1,50021 
1,78872 
2.07722 
2,36572 
2,68307 
2,97158 
3.28893 
3,57743 
3,89478 
4,21214 
4.52919 
4.87569 
5.22189 
5.56810 
5.94315 
6,34705 
6,75096 
7,21254 
7.47417 
8,19347 
8.77048 
9,40518 

10.12644 
10.99194 
12.03055 
13,35744 
15,23293 
18,49301 

Table 2 Radial jet similarity solution 

0.0 
0,02 2144 
,04097 
,06050 
,08003 
.10153 
,12106 
,14057 
,16003 
,18134 
,20058 
,22154 
24036 
24074 
28072 

0.30024 
0.32095 
0.34099 
0,34029 
0,38032 
0.40084 
0,42023 
0,44101 
0,46031 
0.48030 
0,50046 
0,52028 
0,54006 
0,56032 
0.53031 
0.60021 
0.62014 
0,64004 
0,65334 

0.0 
0.02143 
0,04080 
0.05996 
0.07879 
0.09903 
0.11688 
0.13411 
0.15065 
0.16795 
0.18280 
0.19810 
0.21104 
0.22419 
0.23620 
0,24709 
0,25772 
0,24714 
0.27541 
0.28318 
0,29031 
0.29631 
0.30196 
0.30652 
0.31060 
0.31406 
0.3168B 
0.31916 
0.32097 
0.32229 
0.32319 
0.32374 
0,32400 
0,32405 

1,00000 
0.99660 
0,98769 
0.97343 
0.95413 
0.92757 
0,89912 
0,86713 
0.83222 
0.79118 
0.75213 
0.70799 
0.66740 
0.62285 
0.57895 
0.53620 
0.49131 
0.44863 
0.40840 
0.36777 
0.32754 
0.29094 
0,25340 
0.22019 
0.13758 
0.15664 
0.12821 
0.10193 
0.07724 
0,05532 
0,03604 
0,01965 
0.00683 
0.0 

0.15594 
0,15610 
0,15450 
0.15704 
0.15762 
0,15812 
0,15828 
0,15801 
0,15718 
0.15549 
0.15319 
0,14979 
0,14594 
0.14093 
0,13521 
0.12B93 
0.12159 
0,11393 
0.10612 
0.09768 
0.08873 
0,08025 
0.07109 
0.04245 
0,05407 
0.04547 
0.03774 
0.03027 
0,02312 
0,01665 
0,01091 
0.00597 
0,00208 
0.0 

0,35947 
0.36034 
0,36198 
0.36430 
0,36682 
0,36913 
0,37017 
0.36960 
0,36695 
0,36125 
0.35337 
0,34177 
0.32374 
0.31212 
0.29356 
0.27367 
0.25112 
0.22839 
0,20606 
0.182B6 
0,15952 
0,13819 
0,11646 
0,09755 
0,07948 
0.06296 
0.04850 
0.03592 
0.02497 
0,01410 
0,00918 
0,00415 
0,00105 
0,0 

(41) 

The edge values, i\e = rj(oo) and Fe =F(oo) are evaluated from 
equations (39) and (41), respectively. 

Results and Discussion 

The similar solutions tabulated for the plane jet (Table 1) 
and the radial jet (Table 2) are highly mesh resolved and 
considered to be "exact" to four decimal places. These 
computations used 801 ponts across the jet, equally spaced in 
the £ coordinate, and required 10-13 CPU seconds on the 
IBM-3033. Approximately 80 percent of the grid points fall 
beyond the velocity half-width location. A mesh width study 
revealed that reasonable accuracy can be attained with far 
fewer points. In fact, calculations with 41 points produced 
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- j ! ! , , j ! , j _ Table 3 Overall features of the similar solutions 

Fig. 1 Plane jet similar solution, mean properties. Stream function, 
streamwise velocity and lateral velocity profiles. 

Fig. 2 Radial jet similar solution, mean properties. Stream function, 
streamwise velocity and lateral velocity profiles. 

local symmetry plane and jet edge results with less than 1 
percent deviation from the 801 point solution. Global features 
of these solutions (e.g., growth rate) showed even less 
deviation ( — 0.1 percent). The centerline velocity decay rate 
(equation (12)) as well as the half-width growth rate (see 
(equation (9)) and the entrainment velocity (see Eq lib) 
predicted by the present computations are given in Table 3. 

These results represent a standard by which the calculations 
utilizing parabolic-type marching schemes can be judged on 
their approach to far field similarity. It is not the purpose of 
this work to evaluate the performance of the standard k-e 
model with respect to the body of experimental data. 
Nevertheless, it is worth noting that the overall features 
predicted in Table 3 are consistent with plane jet [8] and radial 
jet [9] data. The plane jet growth rate calculated by Ljuboja 
and Rodi [10] with the identical turbulence model as used here 
is 0.114. This exceeds the present result by 6 percent. 

The Goertler and Tollmien type similarity solutions, based 
upon Prandtl mixing length concepts, produce identical 
streamwise velocity profiles for the plane and radial jets [1]. It 
can be proven, and the velocity profiles of Figs. 1 and 2 show, 
that this is not the case for the k-e model. The ratio of the jet 
edge width to the velocity half-width, t)e/r\xn is determined to 
be 2.309 for the plane jet and 2.077 for the radial jet. 

Plane Jet 
Radial Jet 

Velocity Decay Rate 

J/(ulxJ + l ) 
0.1595 
0.1412 

Growth Rate 

>'i/2/* 
0.1080 
0.0951 

Entrainment 

-ve/u0 

0.0567 
0.0972 

Fig. 3 Plane jet similar solution, turbulence properties. Shear stress, 
kinetic energy, and dissipation profiles. 
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Fig. 4 Radial jet similar solution, turbulence properties. Shear stress, 
kinetic energy, and dissipation profiles. 

Calculations by Rodi and Spalding [2] with a (k—kL) model 
produced edge width to velocity half-width ratios about 10 
percent greater than those given here. Such computations 
have consistently predicted radial jet growth rates larger than 
plane jet growth rates [3], a trend opposite to that noted in 
Table 3. 

The lateral distribution of turbulence properties (Figs. 3 
and 4) are much like those given by Rodi [3]. To be noted are 
slight minimums in the turbulent kinetic energy and 
dissipation functions at the radial jet symmetry plane. These 
features were found by Rodi and Spalding [2] but not by Rodi 
[3]. 

The level of the turbulent shear stress in the radial jet is 
about twice that occurring in the plane jet. This is a con
sequence of the factor 2J~' appearing in equation (15) and has 
been pointed out by several researchers. That the turbulent 
kinetic energy levels are also in this proportion follows from 
observing that the profiles G(?j) and G2 F"{rj)/H(yj) are nearly 
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Fig. 5 Plane jet similar solution; turbulent energy balance as a func
tion of lateral position 
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Fig. 6 Radial jet similar solution; turbulent energy balance as a 
function of lateral position 

coincident beyond the location of maximum shear. The 
balance of turbulent kinetic energy equation terms (Figs. 5 
and 6) shows that the maximum shear point occurs ap
proximately where production and dissipation are dominant. 
In such an equilibrium region equations (16) and (26a) yield 

(?) A-equilibrium 
= -c„ 

GF" 1/2 (42) 

Previously, it was shown (equation (26b)) that in the vicinity 
of the jet edge the shear stress to kinetic energy ratio is 
constant for ak = 1. Therefore, the equilibrium region fixes 
the value of this ratio (equation (42)) and the constraints of 
the energy balance in the edge region act to maintain the 
relationship throughout the outer region of the jet. 

The modeled balance given by the turbulent dissipation 
equation (Figs. 7 and 8) shows enhanced effects due to 
convection near the radial jet symmetry plane vis a vis the 
plane jet. This effect is also apparent in the turbulent kinetic 
energy balance but not to the extent shown by Rodi [3] or 
Rodi and Spalding [2] with their k-kL model computations. 
The production and destruction of the dissipation function 
are in near balance at the same location as the turbulent 
kinetic energy near-equilibrium region. Such a balance for 
dissipation requires 
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Fig. 7 Plane jet similar solution; dissipation function balance versus 
lateral position 
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Fig. 8 Radial jet similar solution; dissipation function balance versus 
lateral position 
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which implies a 15 percent excess over the ratio of equation 
(42). The modeling of the dissipation equation (e.g., Rodi 
[11]) is responsible for the slight excess in turbulent shear with 
respect to turbulent kinetic energy depicted in Figs. 3 and 4. 

The edge regions of Figs. 5-8 are consistent with the 
analysis given here showing that, in this neighborhood, 
diffusion and convection (i.e., entrainment) effects are in 
balance. The rapid variation of the balancing terms as the 
edge is approached, and the fact that the location of the edge 
is not known a priori, serve to magnify the difficulty of 
obtaining numerical solutions using TJ as the independent 
variable. 

Concluding Remarks 

The far field similarity equations for plane and radial jets 
subject to the standard k-e turbulence model has been 
presented. The nature of the solutions has been elucidated in 
the vicinity of the boundary separating the jets from their 
stagnant surroundings. This analysis was shown to be 
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necessary in order to achieve the numerical solutions to the 
governing equations and should prove helpful to other in
vestigators. 

A coordinate transformation has been given that accounts 
for the lateral distribution of eddy viscosity by a stretching of 
the similarity variable. This method yields a simplified set of 
governing equations amenable to efficient computational 
solution. The technique is applicable to other related 
problems. 

It is hoped that the detailed solutions tabulated here can 
serve as a guide by which the accuracy of parabolic type 
marching schemes can be assessed to have achieved self-
similarity. For example, Ljuboja and Rodi calculated a plane 
jet growth rate 6 percent in excess of the present calculations 
using the identical turbulence model. The separation of such 
numerical inaccuracy from model shortcomings remains an 
important concern of modelers. Similarity solutions for other 
turbulence models currently in use can help to eliminate some 
of these numerical uncertainties. 
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Near Wake Properties of a 
Strumming Marine Cable: An 
Experimental Study 
Resonant flow-induced oscillations of a flexible cable can occur when the damping 
of the cable system is sufficiently small. The changes in the flow field that occur in 
the near wake of the cable during these resonant oscillations are closely related to 
the changes in the fluid forces that accompany these oscillations. The present wind 
tunnel experiments were undertaken to examine the effects that forced synchronized 
vibration and the helically-wound cross section of the cable have on near wake 
vortex shedding-related parameters; specifically the shedding frequency, vortex 
formation length Lj, reduced velocity Ur, vortex strength and the wake width Lw. 
The range of flow speeds over which the vortex shedding was locked on to the 
vibration frequency varied directly with the vibration amplitude. The helical cross 
section and the synchronized vibration caused significant changes in the near wake 
development that could be directly related to the increase in hydrodynamic forces 
associated with unforced synchronized vibration. 

Introduction 

Marine cables are often integral parts of a complex 
structural system. When fluid flows uniformly past, or when 
these high aspect ratio bluff bodies are exposed to waves and 
nonuniform current flows, vortices are shed as the flow 
separates alternately from opposite sides of the body. When 
the shedding frequency is close to one of the natural 
frequencies (or sometimes a multiple thereof) of the cable 
system, intensified large amplitude cross flow oscillations can 
occur if the structural damping is sufficiently small. 
Strumming, or lock-on is also characterized by increased 
stresses, hydrodynamic forces, fatigue, and ultimately it 
reduces the overall life of the structure and its components. 

Numerous references to vortex shedding-related structural 
problems in the literature attest to the fact that substantial 
research into vortex related synchronization phenomena must 
be performed and analyzed. The present wind tunnel ex
periments were undertaken to examine the effects that forced 
synchronized vibration and the helically-wound noncircular 
cross section of the marine cable have on the near wake vortex 
shedding-related parameters; specifically the shedding 
frequency, vortex formation length, and the wake width. The 
results that are presented in this paper are part of a wider-
ranging study dealing with vortex shedding from a vibrating 
cable in a linear shear flow [14]. 

Background 

The cable system employed in the present study was too 
highly damped to be self-excited in an air flow. Forced ex-

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting, New Orleans, La., December 9-14, 1984, of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Flui.ds 
Engineering Division, November 1, 1983. Paper No. 84-WA/FE-9. 
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Fig. 1 Vortex formation lengths for circular cylinders in uniform and 
linear shear flows 

citation was used to simulate the self-excited resonant wake 
conditions in order to study the lock-on induced changes in 
the cable wake. The validity of this approach has been 
examined by Griffin [5] who found that changes in the near 
wake that accompany resonant vortex excited oscillations 
were reproducible from forced, externally-excited oscillations 
when the experimental conditions were carefuly duplicated. 

The vortex formation length (Lf) is a measure of the 
downstream extent of the vortex formation region in the 
cylinder wake, and is generally defined as the distance be
tween the cylinder center axis and the first downstream ap
pearance of the fully formed periodic vortex street. The 
measurement criterion that was used in the present study to 
define the location of the formation length was the rms 
maximum of the second harmonic of the fluctuating velocity 
on the axis of the wake. This criterion was used in most 
previous studies [1, 4, 12, 14, 21]. 
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Fig. 2 Wind tunnel test section and cable model (streamwise view) 

Figure 1 shows a summary of two experimental studies [14, 
21] dealing with the measurement of the formation length in 
the Reynolds number range 8.0 X 102 to 1.6 x 105. Woo et 
al. measured the formation length at the centers of five high 
aspect ratio brass tubes in various low and moderate linearly 
sheared flows. The formation length values were not 
significantly affected by the sheared flows. There is not much 
scatter in the data of Woo et al. and Peltzer which fall on the 
solid curve, as both were careful to minimize end effects. At a 
Reynolds number of 1.0 x 103, the formation length, Lf/d is 
2.8. As the Reynolds number increases, Lj/d decreases until it 
becomes constant at a value Lf/d = 1.32 when the Reynolds 
number reaches 1.0 x 104, and it remains constant until Re = 
1.6 x 105. 

Studies dealing with changes induced in the near wake of a 
rigid cylinder by self-excited or forced motion of the body 
were conducted by Koopmann [11], Griffin et al. [4, 5, 8, 9, 
10], Davies [3], Stansby [20], Sarpkaya [18], and Zdravkovich 
[22], among others. Koopmann found that the frequency 
range over which lock-on occurred increased as the amplitude 
of cylinder vibration increased. The correlation length, 
defined as the spanwise distance along the cylinder span over 
which the vortex shedding is in phase, increased rapidly as aid 
increased. Griffin et al. found that the length of the vortex 
formation region decreased when the cylinder vibration 
amplitude (aid) and cylinder vibration frequency (fcv/fcsv) 
ratio were increased while the cylinder and vortex shedding 
frequencies were lock-on. The vortex strength, vorticity 
generation, and the wake width increased as the cylinder 
vibration amplitude was increased. 

Zdravkovich summarizes three major reasons why the 
vortex shedding behind a synchronized oscillating cylinder is 
stronger and more regular than that found behind a stationary 
one: 

1). The formation length decreases and the fluctuating and 
time averaged forces are magnified. 

2). The spanwise correlation of the vortex formation and 
shedding are enhanced remarkably by the cyclic oscillations. 

3). Since the synchronization frequency remains constant 
over a range of flow velocities, there is a constant period of 
time available for the formation. More vorticity is generated 
with increased velocity within and along the synchronization 
range and the vortices become stronger. 

By vibrating small aspect ratio (Lid = 16, 20) circular 
cylinders in a uniform flow, Stansby developed empirical 
formulas to predict the frequency boundaries of the lock-on 
region as a function of vibration amplitude in the Reynolds 
number range 3.6 x 103 to 9.2 x 103. He found that the 
vortex shedding locked on to submultiples,/c„//ra„ = 2, 3 of 
the cylinder vibration. At the upper and lower boundaries of 
locking-on, the regular unforced vortex shedding frequency 
was intermittent with the locked-on shedding frequency. 

Studies dealing with synchronization phenomena in the 
near wakes of vibrating flexible cylinders in uniform flow 
have been performed by Ramberg and Griffin [15-17]. With 
hot-wire anemometry measurements they studied the vortex 
wake of a synchronized forced vibrating cable in uniform 
flow for Reynolds numbers between 230 and 1300. There it 
was found that spanwise variation of the vortex formation 
length was determined by the local amplitude (aid) variation. 
As aid increased, Lf/d decreased. An inverse relation was 
found between the local formation length and vortex strength, 
which was consistent with Davies' and Zdravkovich's ob
servations. 

Experimental Apparatus and Methods 

The present experiments were conducted in the 8.5 m long, 
1.8 m square test section of the VPI&SU subsonic stability 
wind tunnel. An electronically controlled three-dimensional 
traverse was available to transport the measuring instruments 
in the vertical (x), spanwise (y), or streamwise (z) directions. 
Figure 2 shows a diagram of the wind tunnel test section 
including the cable model. 

The cable that was used in the tests was constructed of seven 
strands of Kevlar synthetic fiber rope, wound around each 
other helically, and wrapped with a polyurethane jacket. The 
noncircular cross section had a 1.143 cm measured mean 
diameter over the jacket. The aspect ratio of the cable was 
Lid = 107. The cable tension was adjusted with the turn-
buckles and measured using a Strainsert universal flat load 
cell. The small dc motor with an eccentrically located mass 
was attached to the cable in order to excite the lower vibration 
modes by varying the motor speed and cable tension. The 
cable mode shape, vibration amplitude and frequency were 
obtained using a Physitech electro-optical auto-collimator 
tracking unit. The optical head was mounted on the traverse 
downstream of the cable, and focused on the top edge of the 
cable which had an incandescent light source placed up
stream to give a clear edge for tracking the motion of the 
cable. Details of the cable vibration measuring procedure are 
given by Peltzer [14]. 

To examine the vortex shedding characteristics in the near 
wake of the cable, a straight hot-wire probe was attached to 
the traverse and positioned in the cable wake where the 
strongest vortex shedding occurred (xld = 0.92, z/d = 3.5). 
The probe was connected to a TSI model 1050 constant 
temperature anemometer. The output signal from the 
anemometer was band-pass filtered and sent to a ZTL FFT 
processor. 

Previous investigators [11, 20, 21] had not established 
uniform criteria that could be used to determine when the 

Nomenclature 

a = local vibration amplitude 
aC5U = amplitude of vortex shedding 

frequency peak on power 
spectrum 

acl) = amplitude of cable vibration 
frequency peak on power 
spectrum 

d = cable diameter 

fcs 

J CSV 

J cv 
L 

h 

= vortex shedding frequency 
from a stationary cable 

= vortex shedding frequency 
from a vibrating cable 

= cable vibration frequency 
= cable length 
= vortex formation length 

LK 

Re 
St 
Ur 
U* 

y 

wake width 
(Ud/v) Reynolds number 
(fcsu Jcs) dl U Strouhal number 
(U/fcud) reduced velocity 
(U/fcsvd) critical reduced 
velocity 
spanwise location 
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Fig. 4 Cable lock-on regions as a function of vibration amplitude 

vortex shedding initially locked on to the cable vibration. 
Preliminary observations of power spectra of the hot-wire 
signal were used to help establish the criteria that would 
determine when the vortex shedding frequency from the cable 
(/*„„) locked on to the forced vibration frequency of the cable 
(fcu). When the amplitude ratio of the vibration and vortex 
shedding peaks was equal to 20 (acv/acsu = 20), the ratio, 
f cm/few became equal to a constant and the vortex shedding 
was considered locked on to the forced cable vibration. The 
reasons for choosing this criteria are the following. When the 
ratio, acu/acsv, was equal to 20, this typically corresponded to 
the Reynolds number (flow velocity) where the frequency 
ratio, /„„//;•„, initially became equal to a constant even 
though acvlacsv still varied with changes in the flow velocity. 
For values of acv/acsv less than 20, the vortex shedding was 
intermittent between forced and unforced, evidenced by the 
changing ratio fcsv/fm. The intermittent shedding ceased 
when the amplitude ratio was greater than 20, and only forced 
shedding remained. 

The present investigations were performed in two phases 
separated by three months time; a preliminary first phase 
where some experimental data were obtained while the 
measurement techniques were established, and the primary 
second phase where the majority of the data was obtained. 
Unless otherwise noted, the results presented in this paper 
were obtained during the primary phase of the investigation. 

Results and Discussion 

The experiment was designed to measure the flow 
properties in the near wake of a flexible cable forced to 
vibrate in the first mode. The nondimensional first mode 
shape is shown in Fig. 3. The absolute value of a/amM, is 
plotted against the spanwise location (y/d) along the cable. 
The mode shape was invariant with peak-to-peak vibration 
amplitude ratio, amaK/d. The measured values of the vibration 
amplitude (a) were accurate to within ±4 percent for the 
second phase tests and ± 10 percent for the first phase tests. 

The frequency boundaries of the synchronization or lock-
on region were measured for vibration amplitudes ranging 
from 0.02 to 0.32 along the span of the cable. The lower 
boundary of the lock-on region is defined as the initial 
velocity where the frequency ratio, fcsvlfcv, becomes equal to 
a constant (less than 1.0) and the ratio acu/acsv is equal to 20. 
The upper boundary of the lock-on region is defined as that 
initial velocity where fcsv/fcv becomes equal to a constant 
(greater than 1.0) and the ratio, acu/acsv, is equal to 20. The 
significant results are presented in the next four figures. 

The frequency boundaries of the cable lock-on regions are 
plotted in Fig. 4 as a function of increasing forced cable 
vibration amplitude. The numerical values of the frequencies 
defining the boundaries of the lock-on region could be 
measured accurately to within ±1.5 percent. The individual 
frequency ranges that were measured at specific aid locations 
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Fig. 5 Reduced velocity at the boundaries of the lock-on region for the 
vibrating cable as a function of the vibration amplitude 

along the span of the vibrating cable were not influenced by 
changing the maximum value of the vibration amplitude at 
theantinodes. 

The frequency range over which the vortex shedding locked 
on to the cable vibration increased proportionally with the 
vibration amplitude, a finding consistent with Koopmann's 
[11] and Stansby's [20] results. The absolute value of (fcsu/fcv 

- 1.0) at the upper boundary was measurably larger than the 
corresponding value at the lower boundary. The shedding 
remained locked on to the cable vibration over a significantly 
wider frequency range at the upper boundary a finding which 
is consistent with unforced lock-on behavior. 

The lock-on phenomena can be further examined by 
plotting the reduced velocity, Ur = U/fcud, at the boundaries 
of the lock-on region versus the vibration amplitude. Ur is the 
critical reduced velocity (fcsv = f c v ) , where so called perfect 
synchronization occurs [18]. In order for a cable to be 
naturally excited into strumming, the reduced velocity must 
be nearly equal to the critical reduced velocity such that the 
frequency of the vortices that are shed from the cable is nearly 
equal to an excitable natural frequency of vibration (fcsvlfcll 

= 1.0). 
The present results are shown in Fig. 5. Perfect syn

chronization occurred at the critical reduced velocity value U* 
= 5.50 ± 0.22. The corresponding Reynolds number was Re 
= 2.93 X 103. The cable vortex shedding locked on to the 
forced vibration frequency at a constant reduced velocity Ur 

= 5.10 ± 0.15. This value of Ur at the lower boundary of the 
lock-on region was 7.3 percent less than U*. The reduced 
velocity at which lock-on occurs is not a function of the 
vibration amplitude and is nearly equal to the critical reduced 
velocity as it should be in order to correctly simulate unforced 
cable strumming by forced excitation. The upper boundary of 
the lock-on region increased linearly with aid. Larger 
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vibration amplitudes sustain lock-on over a wider Reynolds 
number range. Griffin [3] notes in his summary report that 
the Reynolds number range over which resonant vortex ex
cited oscillations occur is directly proportional to the 
vibration amplitude. 

A combined analysis of Figs. 4 and 5 reveals that the 
frequency at which the vortex shedding initially locked on to 
the forced cable vibration frequency was the chief variable 
that was changing with amplitude. The Strouhal numbers at 
the upper and lower boundaries of the lock-on region are 
plotted as a function of increasing vibration amplitude aid in 
Fig. 6 to examine how the frequency changed. For vibration 
amplitudes below 11 percent, the data exhibited no sub
stantial change, a result consistent with both Griffin's [4] and 
Koopmann's [11] observations pertaining to vibration am
plitude-related changes. They both noted that for forced 
vibration amplitudes less than 10 percent, no measurable 
increases in the correlation or coherence of the vortex 
shedding along the cylinder span could be observed, and that 
above 10 percent there was a measurable increase in the 
correlation or coherence of the shedding. 

For amplitudes greater than 11 percent the Strouhal 
numbers defining the lower boundary of the lock-on region 
decreased linearly with increasing aid. This reduction in 
Strouhal number with increasing aid has been observed by 
Woo et al. [21] in their experimental studies and by Sarpkaya 
et al. [18, 19] in their numerical analyses. In the background 
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section, it was noted that in the synchronization region, L{ 

varied inversely with aid [2, 4, 5], the vortex strength in
creased as Lj decreased [2, 8, 9] and there was a constant 
period of time available for the vortices to form. In the 
present experiments the vortices were shed at a lower Strouhal 
number because of the increased vortex strength. The vortex 
strength was increased because each growing vortex was fed 
circulation over a longer constant period of time. Davies [3] 
found that there was a thirty-five percent increase in the 
strength of the vortices shed from a Z)-shaped cylinder un
dergoing forced synchronized oscillations. Sarpkaya and 
Shoaff [19] numerically showed that as the strength of the 
vortices in the near wake of a vibrating cylinder was in
creased, the Strouhal number decreased proportionally. 

At the upper lock-on limit, the Strouhal number jumped to 
a constant value (independent of aid) slightly less (2.5 
percent) than that found in uniform flow about a stationary 
cable (St = 0.192). This result was consistent with one of the 
observations listed by Sarpkaya [18] in his summary of the 
primary consequences of synchronized shedding. He stated 
that at the end of the lock-on range the vortex shedding 
frequency jumped to a value governed by the Strouhal 
relationship. 

A plot of the centerline Strouhal number variation with 
Reynolds number in the near wake of a stationary and 
vibrating cable is presented in Fig. 7 to examine the range of 
Reynolds numbers over which the vibration had significant 
influence on the Strouhal number. The stationary Strouhal 
numbers increased by 2.5 percent over the Reynolds number 
range examined. Adjacent to the lower Reynolds number 
boundary of the lock-on region (Re < 2.75 X 103), the 
Strouhal numbers associated with the vibrating cable were 
centered around a constant value of St = 0.157 ± 0.05. It will 
be shown later that the formation length was substantially 
reduced in this region also. The vortices were shed at a lower 
Strouhal number because of the increased vortex strength 
accompaning the decrease in Lj. It has been noted [18] that in 
the regions adjacent to the lock-on region the vortex shedding 
was intermittent between forced and unforced. The in-
termittency will also contribute to the increase in vortex 
strength, thereby lowering the Strouhal number. At the upper 
Reynolds number boundary of the lock-on region (Re > 3.85 
x 103), the Strouhal number jumped to within 3.6 percent of 
the non-vibrating Strouhal number, a result that was con
sistent with those found in Fig. 6 and Sarpkaya's [18] sum
mary. The Strouhal number was slightly less than the un
forced value because the intermittency between forced and 
unforced shedding probably caused the vortices to be slightly 
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stronger and the Strouhal number slightly smaller. The 
formation lengths in this adjacent region were also 
measurably less than those behind the stationary cable, 
another indication that the vortices were stronger. At still 
higher Reynolds numbers, the vibrating and stationary curves 
merged, and the vibration no longer had an appreciable in
fluence on the vortex strength, formation length and shedding 
frequency. 

The variation of the vortex formation length values in the 
Reynolds number range, 1.8 x 103 < Re < 4.2 x 104, was 
studied using five different vibration amplitudes; aid = 0.0, 
0.099, 0.13, 0.176 and 0.255. Figures 8-10 present the results 
obtained at aid = 0.0, 0.99, and 0.255. Most of the ex
perimentally measured values of the formation length were 
reproducible to within ±4.0 percent with a few extreme 
values differing by 8.0 percent. Changes in the formation 
lengths that can be related to increasing Reynolds number, 
vibration amplitude variations, and synchronization will be 
discussed presently. 

The formation length values in the near wake of the 
stationary cable are plotted in Fig. 8. The formation length 
was highly Reynolds number dependent. Measurable dif
ferences in the shape of the curve and magnitudes of the 
values were evident when these near wake cable results were 
compared with the smooth circular cylinder results (Fig. 1). 
These differences were the result of the changes in the near 
wake created by the helically wound cross section of the cable. 
Between Reynolds numbers 2.0 x 103 and 1.0 x 104, the 
cylinder and cable Lf curves exhibited a decrease in Lf with 
increasing Reynolds number. The cable values were larger, 14 
percent at 2.0 x 103 and 33 percent at 1.0 X 104 on both 
curves, with Lf = 1.32 behind the cylinder and Lf/d = 1.75 
behind the cable. The smooth cylinder values then remained 
constant with Reynolds number out to Re = 1.5 x 105 while 
the cable values increased with Reynolds number such that at 
Re = 4.1 X 104, the formation length was Lf/d = 2.10. The 

helical cross section of the cable lengthened the vortex for
mation region. 

The major similarities and/or differences that were ob
served when the four sets of vibrating-cable formation length 
results were compared with the stationary cable results are 
discussed below. 

A* Reynolds numbers below the synchronization region 
centered around Re = 2.93 x 103, the vibrating cable for
mation lengths were significantly less than the stationary 
cable values. This vibration amplitude dependent reduction 
was as expected, based on the analysis of the results presented 
in Figs. 6 and 7. The strength of the vortices was increased 
which suggested that the formation length decreased 
correspondingly. At the two lowest vibration amplitudes, aid 
= 0.099 (Fig. 9) and 0.13 the Reynolds number-related 
decrease in Lf was preserved, although the vibrating cable 
values were significantly smaller than the stationary ones. At 
the two highest vibration amplitudes, aid = 0.176 and 0.255 
(Fig. 10), the Reynolds number decrease was obscured by the 
larger vibration-induced changes, which made Lj relatively 
constant before the lock-on region. 

The minimum formation length value, Lf/d = 1.70, and 
the Reynolds number around which it was centered, Re = 1.0 
x 104, were not significantly influenced by the addition of 
vibration. The five sets of results all overlayed each other with 
minimal data scatter for Reynolds numbers greater than 1.0 
x 104, signifying that the vibration had minimal influence on 
the near wake shedding properties beyond this point. 

When the four sets of vibrating cable formation length 
results are compared, a significant synchronization related 
phenomenon can be observed. A sudden increase in Lfld 
occurs during perfect synchronization, at Re = 2.93 x 103 

and U* = 5.50. The maximum value Lj/d approached during 
synchronization was inversely proportional to the amplitude 
aid, a result consistent with previous observations where Lf/d 
decreased with increasing aid [15, 16, 21, 22]. 

Griffin [6] has shown that the base pressure and wake width 
behaved similarly to the present Ls/d data in the perfect 
synchronization region. The values were strongly affected 
during synchronization and returned to stationary values 
shortly thereafter. Other authors have noted a sudden in
crease in spanwise correlation of the phase of the shedding 
[8], fluctuation lift and steady drag forces [22], wake width 
[20], and phase angle between the cylinder displacement and 
maximum rms pressure on that side [22]. The sudden increase 
in the vortex formation length during synchronized vibration 
is directly related to the increase in hydrodynamic forces that 
occurs during lock-on. In the background section of this 
paper, the two modes of synchronized vortex shedding ob
served by Zdravkovich were described. The vortices in the 
upper synchronization range (/"„„//„, > 1.0) were shed when 
the cylinder was near its maximum amplitude on that same 
side of the wake, whereas in the lower synchronization region, 
the vortices formed on one side of the cylinder and were shed 
when the cylinder was close to its maximum amplitude 
position on the opposite side. The longer formation length in 
the upper synchronization region was a direct result of the 
increased stability of the shedding. 

Summary 

A summary of the significant results pertaining to the 
effects of vibration on the vortex shedding in the near wake of 
a marine cable is as follows: 

Locked-on vortex shedding in the near wake of a forced 
vibrating marine cable behaved similarly to that exhibited in 
the near wake of a circular cross section cable undergoing 
natural synchronization. The frequency range over which the 
vortex shedding locked on to the cable vibration increased 
proportionally with the amplitude of vibration. 
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At the lower boundary of the locked-on region, the 
Strouhal numbers and vortex formation lengths varied in
versely with the vibration amplitude a/d, while the vortex 
strengths varied in direct proportion to a/d. The reduced 
velocity was independent of a/d. At the upper boundary the 
vortex strengths, Strouhal numbers, and formation lengths in 
the vibrating cable wake were virtually amplitude independent 
and nearly equaled those values measured in the wake of a 
non-vibrating marine cable. The reduced velocity increased 
linearly with aid. 

Perfect synchronization occurred when the critical reduced 
velocity was U* = 5.50, and was accompanied by a sudden 
increase in the vortex formation length. This increase is 
directly related to the increase in hydrodynamic forces 
associated with unforced synchronized vibration. Shortly 
after the end of synchronization the Lf values returned to 
stationary values. Other authors had found that the base 
pressure, wake width, spanwise vortex shedding phase 
correlation, and fluctuating lift and steady drag were also 
strongly influenced during perfect synchronization and 
returned to stationary values thereafter. 
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Transient Starting Flow in a 
Cylinder With Counter-Rotating 
Endwali Disks 
Spin-up from rest in a cylinder with top and bottom endwali disks rotating in op
posite directions (QT and fifl are the respective rotation rate, but S[ = UT/UB] < 0) is 
investigated. The sidewall is fixed to the faster-rotating disk. A finite-difference 
numerical model is adopted to integrate the unsteady Navier-Stokes equations. We 
consider a cylinder of aspect ratio 0(1) and minute Ekman numbers. Numerical 
solutions are presented to show the transient azimuthal flow structures, axial 
vorticity profiles, and meridional flow patterns. An azimuthal velocity front, which 
separates the rotating from the nonrotating fluid, propagates radially inward from 
the sidewall. The appearance of the front is similar to the front propagation in spin-
up in a rigid cylinder. As S decreases from zero, the direction of rotation in the bulk 
of the interior fluid becomes the same as that of the faster-rotating disk. The 
azimuthal velocities are still vertically uniform in the bulk of the interior. The scaled 
time to reach the steady state decreases. The angular velocities of the interior fluid 
near the central axis become very small. Under counter-rotation, the meridional 
circulation forms a two-cell structure. A stagnation point appears on the slower-
rotating disk. During spin-up, the stagnation point moves from the sidewall to its 
steady-state position. As counter-rotation increases, the radial distance traveled by 
the stagnation point decreases. 

1 Introduction 

The transient process of adjustment of a contained fluid 
initially at rest to the impulsively-started spinning container 
has been termed "spin-up from rest" [1, 2]. Knowledge of 
this internal flow is needed in various applications [3-5], e.g., 
spin-stabilized liquid-filled projectiles and rockets, rotating 
fluid machinery, chemical mixers, etc. We confine attention 
to cylindrical containers of aspect ratio h/a~0(\) and we 
consider situations in which the Ekman number E=v/Qh2 is 
minute, where a is the radius of the cylinder, h the height, v 
the kinematic viscosity of the fluid, fl the rotation rate of the 
container. 

The basic analytical model for impulsive spin-up from rest 
in a rigid cylinder was developed by Wedemeyer [6]. It has 
been established that the most important process controlling 
spin-up is the weak meridional circulation driven by Ekman 
layers on the endwali disks [6, 7]. The azimuthal flows in the 
interior are divided into two regions by a moving front, which 
propagates from the cylinder sidewall to the central axis. The 
nonlinear properties associated with the front propagation 
were analyzed by several authors [8-11]. The overall fluid 
adjustment in the interior is substantially accomplished in the 
spin-up time scale 0{E~VlSl~l). Spin-up from rest in a rigid 
cylinder has since been investigated extensively. 

The flow in a differentially-rotating cylinder, i.e., the top 
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endwali disk rotates at tiT, the bottom disk at UB, and the 
sidewall at Qs, exhibits some qualitative differences from the 
flow in a rigid cylinder. The final steady-state in a dif
ferentially-rotating container is not a solid-body rotation; 
there is a vertical motion in the interior sustained by the 
Ekman suction (blowing) at the faster (slower) rotating disk. 
Accordingly, the transient motion, which occurs between the 
initial impulse and the final state, shows features 
distinguishable from spin-up flows in a rigid cylinder. The 
ratio of the rotation rates of the endwali disks, S=QT/QB, 
emerges as a key parameter. For the special cases when one 
disk is stationary (S = 0.0), numerical investigations were 
conducted for steady flow [12], and for both steady and 
unsteady flow [13]. Recently, reference [14] presented 
numerical solutions for the spin-up from rest for the 
parameter range of 0 .0<S< 1.0. It was demonstrated that as 
the steady state is approached, the interior core fluid rotates 
at a constant angular velocity which takes a value in
termediate between fir and QB. The transient flows are no 
longer antisymmetric about the cylinder middepth as S 
deviates from unity [15]. These features are in qualitative 
agreement with the predictions of the analytical model of [16], 
which is a direct extension of Wedemeyer's model [6]. 

The steady flow of an incompressible fluid confined be
tween two disks rotating in opposite directions, S 
[ s ( l r /B j , ]<0 1 has been the subject of some uncertainty (see 
[17], [18], and the papers cited in reference [19]). Dijkstra and 
Heijst [19] recently studied both numerically and ex-
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Fig. 1 Plots of scaled angular velocity Wri) versus scaled time T at two 
radial locations, R = 0.50 and R = 0.75, along middepth Z = 0.5. (a) for 
case C2 (E = 4.34 x 1 0 ~ 4 , S = 0.0); (b) solid lines are for case C4 
(E = 4.34 x 10 
x 10~ 3 , S= -

,S= -0.83), and broken lines are for case C5(E = 1.0 
0.83). 

perimentally the steady flow between two finite, counter-
rotating disks enclosed by a cylinder. They considered a 
cylinder of low aspect ratio (5[ = h/a\ =0.07) and the smallest 
Ekman number used was E\ = v/Qh2] =0.001, where Q is the 
larger value of \QT\ and \QB I. They reported that owing to 
the presence of the sidewall the physically realizable flows are 
unique for the parameter range covered. Most significantly, 
they showed that a stagnation point appears in the meridional 
flow field at the slower-rotating disk under moderate and 
strong counter-rotation. It was also found that for strong 
counter-rotation a sizable portion of interior fluid at small 
radii does not rotate or has a very small rotation rate. 
Although the parameter range of [19] is restricted, [19] 
provides definitive information vital to a proper un
derstanding of the steady flow between two counter-rotating 
disks. 

We propose in this paper to examine the transient flows 
occurring in spin-up from rest in a cylinder with counter-
rotating endwall disks. As was done in [19], the sidewall of the 
cylinder is fixed to the bottom disk, i.e., Qs = fiB. The purpose 
of this study is to gain knowledge on the transient process 
whereby the steady flow between counter-rotating disks is 
built up from the initial state of rest. In much the same way as 
in [12-14], we acquired comprehensive flow data by 
numerically integrating the unsteady Navier-Stokes 
equations. The main thrust of this paper is to present the 
details of (1) transient azimuthal flow structures, and (2) the 
patterns of the meridional circulation, especially the transient 
behavior of the stagnation point [19]. This paper reports only 
the representative and physically illuminating results of the 
flow computations. 

2 Formulation 

The governing equations are the unsteady, axisymmetric, 
incompressible Navier-Stokes equations. Written in cylin
drical coordinates (r, 6, z) with respective velocity components 
(«, v, w), those equations are standard and will not be 
repeated here (see, e.g., equation (1) of reference [13]). 

The initial conditions for the fluid are 

u=v = w = 0att = 0, 

and the boundary conditions are 
(1) 

Z 0.5 

Z 0.5 

Z 0.5 

Fig. 2 Vertical profiles of Wrfi at fl = 0.50 and fl = 0.75. Scaled times 
are , T = 0.29; , 7 = 0.75; T = 1.40. (a) for case C2, (b) 
for case C4, (c) for case C5. For plots in Figs, (b) and (c), the curves for 
T = 0.75 and for T = 1.40 overlap within graphical resolution. 

u = w = 0, v = rQTatz = h, (2) 

u=w = 0, v = rQB a t z = 0 , (3) 

u = w = 0, v = aQB a t r = a . (4) 

To satisfy numerical stability requirements, the boundary 
conditions at the central axis are applied at a small, but finite 
radius r — r,•. Thus, we have [20] 

u = v = 0,dw/dr = 0atr=ri. (5) 

We employed the finite-difference techniques to solve this 
system of equations. The details of the numerical model 
adopted, including the finite-differencing schemes, were given 
in [20]. The reader is referred to [14] and [20] for a description 
of the actual implementation of the numerical model for the 
spin-up problems. 

3 Results and Discussion 

Computations were performed for the following five sets of 
experimental parameters (rotation rates in rad/s): 

C l , E = 4 . 3 4 x l 0 - 4 , 
C2, E = 4 . 3 4 x l 0 - \ 
C3,E = 4 . 3 4 x l O - \ 
C4, E = 4 . 3 4 x l 0 - \ 
C 5 , E = 1 . 0 0 x l 0 - \ 

n7- = 0.211,aB = 0.211,5=1.0; 
fir = 0.0, fifl = 0.211,5 = 0.0; 
QT= -0 .063, Qfl =0.211, S= - 0 . 3 ; 
QT= -0.175, fiB = 0.211, S= - 0 . 8 3 ; 
QT= -0.082, UB =0.099, 5= -0 .83 . 

The dimension of the cylinder used was a = 10.14 cm, 
h = 10.05 cm. The fluid was water with v = 9.3xW~3 cm2/s 
except for case C5 for which y = 1 . 0 x l 0 " 2 cm2/s. These 
values were chosen from the laboratory experiments of Hyun 
et al. [10] for the spin-up in a rigid cylinder. Note that the 
cylinder aspect ratio hi a is about unity. 

The results of the computations are given in Figs. 1-7. Since 
lfiB I > in r l in the present calculations, the value of Q in the 
figures is the same as Q.B. The nondimensional quantities are 
defined as R = r/a,Z = z/h, T=Ey'Qt. 

(a) Azimuthal Flows. Figure 1 displays the temporal 
variation of the azimuthal flows, plotted as scaled non-
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Fig. 3 Radial profiles of Wril along Z = 0.5. (a) for case C2, and (b) for 
case C4. In Fig. (b), the curves for T = 1.20 and for T = 1.40 overlap. 

Fig. 4 Radial profiles of the axial vorticity t along Z = 0.5. (a) for case 
C2, and (b) for case C4. 

[b) 

L klM — 

l 

Fig. 5 Plots of the meridional stream function 4, for case C2. (a) at 
T = 0.30. ^ m a x = 0 . 9 7 , ^ m i n = 0 . 0 , A* = 0.2; (b) at 7 = 1.40. ^ a x = 0 . 7 8 , 
^ m i n = 0 . 0 , Ai/' = 0.15. Values of \j/ are normalized by Vi E 
denotes the contour increment. 

v'aa2h. A$ 

QJIR 
nut 

Fig. 6 Plots of i for case C3. (a) at T = 0.014. î max = °-4 4 . ^mln = 
- 0.06, A,/. = 0.2; (b) at 7 = 0.30. ^ m a x = 1.00, ^ m l n = - 0.29, A^ = 0.2; (c) 
at T = 0.82. ^ m a x = 0.85, ^ m | n = -0.18, A^ = 0.2; (d) at 7 = 1.40. 
^max =0.84, \pm-m = -0.13, A^ = 0.2. Broken lines denote ^ = 0.0. 

1.0 

0.0 
0.0 1.0 

Fig. 7 Plots of ^ for case C4. (a) at 7 = 0.30. ^ m a x = 1.05, ^ m i n = 
A0 = 0.4; (b) at T = 1.40. ^ m a x = 1.20, ^ m i n = - 0.83, A^ = 0.4. 

-0.86, 

dimensional angular velocity v/rQ versus scaled time T, at two 
radial locations along middepth Z = 0.5. Figure 1(a) shows the 
results for the case when the top disk is stationary (S = 0.0), 
and Fig. 1(b) for the case of counter-rotating disks (S = 
-0.83). Plots depicting the spin-up in a rigid cylinder 
(S=1.0) were presented previously (see, e.g., Fig. 1 of [10], 
Fig. 1 of [14]). Figures 1(a) and 1(b) clearly demonstrate the 
presence of the front. Ahead of the front, the fluid remains 
nonrotating, and only after the passage of the front the fluid 
begins to rotate. 

Note that Fig. 1(a) for S = 0.0, and the solid curves in Fig. 
1(b) for S = -0 .83 , and Fig. 1 of [14] for S= 1.0 all have the 
same value for the Ekman number. Comparisons of these 
figures reveal that the scaled angular velocity at a given 
location and at a given time decreases as S decreases from 
unity. For instance, at # = 0.5, Z = 0.5, and at 7=0.93, the 
value of v/rQ is approximately 0.63 for S=1.0, 0.20 for 
S = 0.0, and 0.10 for S= - 0 .83 , respectively. 

Figure 1(b) shows that the angular velocity at a given point 
increases as the Ekman number increases. This is attributed to 
the increased influence of viscous diffusion effects as E in
creases. A similar finding regarding the effect of E was ob
tained for the case of a rigid cylinder ([10], [11], [14]). 

The vertical structures of the transient azimuthal flows are 
illustrated in Fig. 2. It is important to recognize that for all 
values of S, the azimuthal flows are, to a high degree of ac
curacy, uniform in the vertical direction in the bulk of the 
interior. The structure of the bottom boundary layer remains 
substantially unchanged as S decreases from zero. 

Figure 2(a) for S = 0.0 demonstrates that at the radial 
location # = 0.50, the value of v/rQ in the interior at large 
times (see the curve for T= 1.40) approaching the steady state 
is approximately 0.33. We note that the theoretical similarity 
solution for steady flows between two infinite disks for S = 0.0 
in the limit E ^ 0 yields v/rQ = 0.3\3 in the interior core region 
([17], [19]); the present calculations at large times are in 
qualitative agreement with the similarity solutions. We expect 
that, due to the presence of the rotating sidewall, the angular 
velocity of the fluid confined in a finite cylinder tends to be 
larger than the prediction of the similarity solutions for in
finite disks; obviously, the similarity solutions become less 
accurate at large radii (see the plots for R = 0.75 in Fig. 2(a)). 

Figures 2(b) and 2(c) show the angular velocity profiles for 
strong counter-rotation of the disks (S= -0.83). It is im
portant to observe that the azimuthal flows are still vertically 
uniform in the main body of the interior. This is in contrast to 
the steady flow profiles depicted in [19]. Figure 12 of [19] 
shows that under strong counter-rotation (S= -0.825) the 
steady-state azimuthal velocity varies continuously with 
height from the bottom to the top disk. We note two factors 
for this apparent discrepancy. Figure 12 of [19] used E = 0.01, 
which is an order of magnitude larger than the value of E used 
in the present computations. Therefore, for the flows in Fig. 
12 of [19], the influence of viscous diffusion from the disks 
would penetrate to a larger distance into the main body of 
fluid. In addition, we recall that the aspect ratio in [19] is very 
small (5 = 0.07), whereas 5 - 1 for the present computations. 
Because of the above two reasons, the viscous diffusive effects 
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permeate over much of the flow field considered in [19], 
producing an azimuthal velocity profile which varies con
tinuously with height. On the other hand, for the present 
computations, a substantial portion of the flow field outside 
the disk boundary layers is essentially inviscid; therefore, the 
azimuthal velocity is vertically uniform in that inviscid region, 
as is demonstrated in Fig. 2(b) and Fig. 2(c). 

Inspection of Fig. 2(a) and Fig. 2(b) indicates that, as S 
decreases from zero, the region near the top disk in which the 
azimuthal velocity varies with height widens, and the angular 
velocities in the bulk of interior decrease. Furthermore, the 
scaled time to reach the steady state decreases under strong 
counter-rotation. 

Comparisons of Fig. 2(b) and Fig. 2(c) reveal the effect of 
the Ekman number. As the Ekman number increases, the 
overall spin-up process is facilitated due to the increased 
influence of viscous diffusion. It is also to be noted that, as E 
increases, the influence of the top disk penetrates deeper into 
the fluid and, consequently, the region in which the fluid 
rotates in the same direction as the top disk widens. 

Figure 3 displays the radial profiles of the transient angular 
velocities along middepth Z = 0.5. The radially propagating 
velocity front is clearly discernible in Fig. 3. It is shown that 
the front takes T~ 1 to reach the central axis. Figure 3(a) for 
S = 0.0 indicates that at T= 1.40, which is the largest time for 
which the present computations were made, the azimuthal 
flows are still evolving slowly with time. Under counter-
rotation (see Fig. 3(b) for S= -0.83), the steady state is 
achieved over a shorter perioed of time than for S = 0.0. As 
was stated earlier, the angular velocities are very small in the 
core region away from the sidewall during the entire spin-up 
process under strong counter-rotation. 

The radial gradients of the azimuthal flows are described by 
the axial vorticity, t;=(\/r)[(d/dr)(rv)], as shown in Fig. 4. 
The vorticity is zero ahead of the front, and behind the front f 
varies continuously from zero to the maximum value at the 
sidewall. The values of nonzero fare large at early times. This 
points to the existence of large flow gradients caused by 
vigorous spin-up flows concentrated behind the front [21]. As 
time progresses, the spin-up flows are less concentrated and 
the vorticity behind the front weakens accordingly. As was 
seen in Fig. 3(b), under strong counter-rotation, the angular 
velocity varies radially from very small values in the central 
core region to unity at the sidewall. Therefore, the in
tensification of the radial flow gradients, which are 
represented by the f-distribution, is more pronounced in the 
region near the sidewall, as S decreases from zero. Figure 4(b) 
for S= -0 .83 exemplifies this argument. 

(b) Meridional Flows. In order to illustrate the 
meridional flows, we introduce the meridional stream func
tion i/s which is defined as u = (\/r)(d\{//dz), w = 
~ (l/r)(d\l//dr). In the ensuring figures, positive values of ^ 
imply counter-clockwise circulation. 

Figure 5 shows the i/'-plots for S = 0.0. Since the top disk is 
stationary, the bottom disk dominates the flow field. The 
general patterns of the meridional circulation can be depicted 
as follows. The fluid is sucked into the bottom boundary layer 
over much of the length of the bottom disk. The return circuit 
is in the sidwall boundary layer, whose thickness is scaled by 
0(E'Ah). The top boundary layer expells the fluid into the 
interior region, thus completing the circulation. Only counter
clockwise circulation appears in the meridional plane, a flow 
pattern referred to as the one-cell structure [19]. At early 
times (see Fig. 5(a) for T= 0.30), the meridional flows are 
vigorous and, consequently, the spin-up proceeds at a fast 
rate. The meridional circulation is concentrated in the region 
near the bottom disk and near the sidewall. This meridional 
circulation has not fully affected the region near the top disk 
and near the central axis. At large times (see Fig. 5(b) for 

T= 1.40), the flows have approached the steady state. In the 
interior, there is an almost uniform vertical flows sustained by 
the Ekman suction (blowing) at the faster (slower) rotating 
disk. 

As S decreases below zero, several qualitatively distinctive 
features are seen. Figure 6 shows the i^-plots for moderate 
counter-rotation (S = -0 .3) . Since \QB\ > IQ7-I, the interior 
flows are controlled by the bottom disk. At very early times 
(see Fig. 6(a) for r=0.014), the counter-clockwise circulation 
begins to form near the lower right corner in the meridional 
plane. At early times (see Fig. 6(b) for 7=0.30), the counter
clockwise circulation has grown and reaches up to the top 
disk. We note that a weak clockwise ciculation has appeared 
near the top because of the rotation rate of the top disk. Thus, 
the meridional flows form a two-cell structure. A stagnation 
line, along which i/- = 0, separates the two cells. The point 
where the stagnation line meets the top disk was termed the 
stagnation point [19]. At intermediate times (see Fig. 6(c) for 
r=0.82) , the stagnation point has moved toward the central 
axis. At large times approaching the steady state (see Fig. 6(d) 
for T= 1.40), the stagnation point has advanced further 
toward the central axis (approximately at R = 0.5). 

Under strong counter-rotation, the qualitative patterns of 
the meridional flows are similar to those for Fig. 6. Figure 7 
shows the v^-plots for S= -0 .83 . Although IOgl is only 
slightly larger than \QT\, the meridional flows in the bulk of 
the interior are dominated by the faster-rotating disk. The 
clockwise circulation near the top disk occupies a small 
region, but it is stronger than for moderate counter-rotation 
(compare the magnitudes of i/-max and i/-min of Fig. 6 and Fig. 
7). The presence of the stagnation line is apparent in Fig. 7. 
However, under strong counter-rotation, the stagnation point 
travels a smaller radial distance from the sidewall during the 
spin-up process than under moderate counter-rotation. 

In summary, Figs. 6 and 7 demonstrate that counter-
rotation of the disks creates the stagnation point on the 
slower-rotating disk. During the spin-up process, the 
stagnation point moves radially inward from the sidewall to 
the steady-state position. As the strength of counter-rotation 
increases, the steady-state stagnation point is located further 
away from the central axis. This behavior of the steady-state 
stagnation with increasing counter-rotation was pointed out 
by [19], who made numerical computations and experimental 
measurements of the steady flows. 

4 Conclusion 

The transient azimuthal flows are vertically uniform in the 
bulk of the interior even under strong counter-rotation of the 
disks. This is due to the very small values of the Ekman 
numbers used and the cylinder aspect ratio 5—1. Similarly to 
the case of a rigid cylinder, the azimuthal velocity front 
propagates radially inward from the sidewall. The time scale 
characterizing the overall spin-up adjustment is E~ l / !f i_ l . As 
5 decreases below zero, the following features are noted: the 
angular velocities in the interior region away from the 
sidewall become very small; the region near the slower-
rotating disk in which the azimuthal flows vary rapidly with 
height widens; and the scaled time to reach the steady state 
decreases. The spin-up process tends to be facilitated as E 
increases. The axial vorticity behind the front increases under 
counter-rotation, pointing to large radial flow gradients. 

When S = 0.0, the meridional flows form a one-cell 
structure. Under counter-rotation, the meridional flows show 
a two-cell structure; the stagnation line, i/< = 0, separates the 
two cells. As spin-up proceeds, the stagnation point on the 
slower-rotating disk moves radially inward from the sidewall 
to the steady-state position. As counter-rotation increases, the 
radial distance traveled by the stagnation point during spin-up 
decreases. 
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Numerical Solution of Laminar 
Boundary Layer Flow About a 
Rotating Sphere in an Axial 
Stream 
A finite-difference scheme is developed for solving the boundary layer equations 
governing the laminar flow about a rotating sphere which is subjected to a uniform 
stream in the direction of the axis of rotation. Numerical results are presented for 
the meridional and azimuthal velocities and for the wall-shear-stress components. 
Also, the angle at which the meridional velocity gradient normal to the wall 
vanishes is given at values of the parameter Ta/Re2 ranged from zero (the 
stationary sphere case) to 10000. As compared with the momentum integral 
technique of Schlichting [8], the present scheme succeeded in obtaining solutions for 
very considerably larger values of the parameter Ta/Re2. 

Introduction 

The flow on a body of revolution spinning about its axis, 
which is parallel to a stream, is of importance in many 
engineering applications. Examples of such applications are 
the ballistics of projectiles with spin and the flow on the hub 
of an axial turbomachine. The present paper deals with a 
special case of this problem; namely, the flow around a sphere 
rotating about its axis and simultaneously subjected to a 
stream in the direction of the axis of rotation. 

The limiting case which is a fixed sphere in a stream of air 
has been theoretically investigated by Tomotika [1], 
Tomotika and Imai [2], Frossling [3], Scholkemeier [4], Rott 
and Crabtree [5], Smith and Clutter [6], Sheridan [7], and 
Schlichting [8]. In all these investigations [1-8] the boundary 
layer simplifications were considered but, however, several 
methods were utilized for obtaining the solutions. Momentum 
integral techniques were used by [1, 2, 5 and 8], series 
solutions were considered by [3 and 4], and combined finite-
difference-integral methods were utilized by [6 and 7]. 

On the other hand, limited publications are available for 
the case of a rotating sphere in an axial stream. Luthander 
and Rydberg [9] considered the air drag on a rotating sphere 
which is subjected to a flow in the direction of the axis of 
rotation. Their results showed a considerable increase in the 
drag with the ratio of the circumferential velocity to the free-
stream velocity (V„,/U„). Burgers [10] gave a few general 
formulations for the same case. Similar results were obtained 
by Schlichting [8] who investigated the laminar flow about a 
rotating body of revolution in an axial air-stream by using a 
momentum integral technique. Also, Parr [16] investigated 
the boundary layer flow on a spinning body of revolution. For 
the special case of a rotating sphere in an air-stream, 
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Schlichting [8] obtained the separation point, the drag, and 
the resisting moment for some values of the spin parameter 
Vm/U„. The effect of rotary motion on the position of the 
line of laminar separation on a sphere has also been computed 
by Hoskin [11]. Both Schlichting [8] and Hoskin [11] found 
that the separation point of the laminar boundary layer is 
advanced at the rear hemisphere by the effect of rotational 
motion. 

In order to augment the information available on the 
methods of solving the boundary layer equations governing 
the case under consideration, a finite-difference scheme has 
been developed and numerical results of this scheme are 
presented here. Also, additional data to those available in the 
literature concerning the flow details are given. 

Governing Equations and Boundary Conditions 

We consider the steady laminar flow of an incompressible 
Newtonian fluid with constant physical properties in the 
region outside a sphere which is rotating with constant 
angular velocity about a diameter parallel to the flow 
direction. The flow is assumed to be rotationally symmetric 
about the axis of rotation. Let x, y, z be a rectangular cur
vilinear fixed coordinate system as shown in Fig. 1. The x-axis 
is measured along a meridional section, the .y-axis is along a 
circular cross section of the sphere by a plane perpendicular to 
the axis of rotation, and the z-axis is at right angles to the 
tangential xy-plane. 

Under the above mentioned assumptions and in the absence 
of of body forces, the boundary layer equations for the 
problem at hand, as given by Schlichting [8], are: 

Continuity equation: 

du u dr dw 2w 
+ _ + _ r _ + _ — = o (1) dx dx dz z + a 
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Fig. 1 Coordinate system 

^-momentum equation 

du 
dx 

v1 dr du _TJtdu*0 d2u 

r dx dz ° dx dz2 

^-momentum equation: 
dv uv dr dv d2v 

u — 1 1- w —— = v —-T-
dx r dx dz dz 

(2) 

(3) 

Equations (1) through (3) are subject to the following 
boundary conditions: 

at z = 0 (sphere surface) and x > 0, 
u = w = 0 and v = v0, 

atz = 0andx = 0u = v = w = 0 
(stagnation point), 

a t z > 5 a n d x > 0 , u = u*, v = 0, 
and 

atx = 0,z>0w = w* andt> = w = 0. 

(4) 

It is noteworthy that the foregoing boundary conditions take 
into consideration that far away from the surface of the 
sphere (i.e., z><5) the flow is of a two dimensional potential 
type. The two velocity components for such a two dimen
sional potential flow are [12]: 

w*=-UK COS0, 

Fig. 2 Numerical grid 

and hence UQ= - l/„sin0. 

Introducing the dimensionless parameters given in the 
nomenclature, equations (1-3) and the boundary conditions 
(4) become: 

dU U dR Re a w W 

lix+~R~dx+ T ~Hz + eTVz~° (5) 

u-
dU / T a \ V2 

Re dU dm d2U 
J \y = u* !L J 

R dX 2 dZ ° dX dZ2 

Ir dV UV dR R e „ dV d2V u— + H — w— = —=-
dX R dX 2 dZ dZ2 

(6) 

(7) 

N o m e n c l a t u r e 

a = sphere radius 
CM = dimensionless torque coefficient, 2M/pQ2 a5 

CD = dimensionless drag coefficient, ID/irpU2^ a2 

D = frictional drag 
m = number of steps of the numerical mesh network in 

the ^-direction 
M = torque 
n = number of steps of the numerical mesh network in 

the Z-direction 
r = radius of a circular cross section of the sphere by a 

plane perpendicular to the main stream direction 
R = dimensionless radius of a circular cross section of a 

sphere by a plane perpendicular to the main stream 
direction, 

2r 

oRe 

Re = Reynolds number, 2U„ a/v 
tx = wall shear stress in meridional direction, 

du 

dz 

ty = wall shear stress in azimuthal direction, 

dv 

dz 

Tx = dimensionless wall shear stress in meridional 
direction, 

^VRe/2 

Ty = dimensionless wall shear stress in azimuthal 
direction, 

V / R e / 2 

U2 

4 f i V 
Ta = Taylor number,—=— 

v 

u = meridional (x-direction) component of velocity 
U = dimensionless meridional component of velocity, 

U/Ua, 
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a t Z = O a n d ^ > 0 , U=W=0 
Re 

andK= — R, 

a t Z = Oand.Y=0, U=V=W=0, 
a t Z > 5 * a n d ^ > 0 , U=U* 

= [1 + 2aw] s i n^= 0- a n d 

a t*=O( i . e . , 0 = O)andZ>O, W= W* 

-['-iiwl a n d K = t / = 0 

(8) 

The parameter Ta/Re2 , which appears in equation (6), has 
a physically significant meaning in that it represents the ratio 
between the centrifugal and inertia forces. 

Finite-Difference Representation of the Governing 
Equations and Method of Solution 

The numerical analysis and the method of solution which 
will be used here can be considered as an indirect extension of 
the original work of Rouleau and Osterle [13] to include the 
case of rotating boundaries, and the work of El-Shaarawi and 
Sarhan [14] to include the case of unconfined flows. 

Figure 2 shows the numerical grid where the independent 
variables are computed at the intersections of the grid lines 
and (/, j) is a typical mesh point. Mesh points are numbered 
consecutively with the / progressing in the radial direction 
with / = 1, 2, 3, . . . , n+ 1 from the sphere surface, and they 
progressing in the meridional direction withy = 1, 2, 3 
m + 1 from the stagnation point. At each meridional station/, 
the number of radial increments n should be chosen so that 
the uppermost point (/ = /! +1) lies in essentially undisturbed 
fluid. 

Replacing the derivatives by the appropriate finite-
difference representations [13-14], equations (5-7) and the 
boundary conditions (8) can be written in the following 
forms: 

Ui+1, j+ I + Uit j+1 - Ui+lj• •u, 

2AXi+lA 

+ ( W , ^ r ) R e c o t ( . . A g ) 

4[1+Z /+1/1] 

, Re Wi+u+1-Wu+l | R«Wl+l.j+i + W,.j+1) _Q 

AZ 2{1+Zi+Vl] 
(9) 

Uu+l-U,j_ _ / T a x VUVU±1__ 
'•J AX, V Re / 2 [ l+ ( / - l )AZl u ; 

+ wltJ-
Re 

Ui+l,j+l ^ i - l . y + l 3 , 
— = -smOA0)"3/iRecos(/»A0) 

, ^ i + i , y + i —2l/fiy+i +Ui_lj+l 

(AZ)2 (10) 

+ w. 
Vn-i.j+i + V^j-Vt-u-Vnj+i Re 

4AZ 2 

Vi+i,j+i+Vl+u-2Vu+i -2Vu+V,.liJ+l +Vj-i,j 
2(AZ)2 (11) 

a t Z = 0 i . e . , / = l a n d ^ > 0 i . e . , y > l , 
UlJ=WiJ=0, VlJ=sm[U-l)Ad] 

a t Z = 0i.e., /= 1 and*=0i.e. ,y ' = l, 
^1.1 = 1̂.1 = ^1.1=0, 

a t Z > S * a n d X > 0 i . e . , ; = « + l a n d / > l , 

^ - - = [ 1 + 2aTW] s i n [ ( / ' -1 ) A e ] ' ^ (12) 

^ + i . ; = 0, 
a t A X ) a n d Z > O i . e . , y = l a n d ; > l , 

w — i 
" M ( l + ( / - l ) A Z ) 3 l' 
and Vn = Un=0 

It should be noted that the variables with subscript j + 1, in 
the finite-difference equations (9)-(ll) represent the 
unknowns and those with subscript j are knowns. Also, 
applying the numerical stability theories summarized in [17] 
shows that finite-difference equations (9-11) are consistent 

Nomenclature (cont.) 

w = 
U* = 

Ua = 

^ o 

v„, 
w 
W 

w* 
W* 

potential velocity component in the .f-direction 
dimensionless potential velocity component in the x-
direction, u*/Ua 

free stream velocity 
azimuthal (y-direction) component of velocity at 
any point 
dimensionless azimuthal velocity component at any 
point, v/tta 
circumferential velocity at a point on the sphere 
surface, Or 
dimensionless azimuthal velocity component at a 
point on the sphere surface, r/a 
maximum circumferential velocity, Qa 
radial (Z-direction) velocity component 
dimensionless radial velocity component, wlUm 

radial velocity component for potential flow 
dimensionless radial (z-direction) velocity com
ponent for potential flow, w*/U„ 
distance along the circular generator of the sphere's 
surface measured from the stagnation point 

X 

Z = 

fi = 
/* = 
v = 
5 = 

5* = 

dimensionless meridional distance along the surface 
measured from the stagnation point, 2x/Re« 
distance measured along a circular cross section of 
the sphere by a plane perpendicular to the axis of 
rotation 
distance from the surface measured along the 
normal to the wall in the radial direction 
dimensionless distance perpendicular to the wall in 
the radial direction, z/a 
center angle measured from the axis of rotation 
angular velocity of the sphere 
dynamic viscosity of fluid 
kinematic viscosity of fluid 
meridional boundary layer thickness 
dimensionless meridional boundary layer thickness, 
8/a 

Subscripts 
0 = on the sphere surface 
s = at separation point 
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with the boundary layer equations (5-7) and are stable as long 
as U is non-negative. 

The foregoing finite-difference equations are linearized by 
assuming that, where the product of two unknowns (with 
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subscript./' + 1) occurs, one of them is given approximately by 
its value at the previous meridional step (with subscript J). 
This is done so as to enable the equations to be numerically 
solved in the following manner. 

The numerical solution of these equations is obtained by 
first selecting values of Re and Ta/Re2. Then starting with 
j=\ (stagnation line) and applying equation (11) for / = 2, 3, 
. . . , n, we get (n - 1) simultaneous linear equations in (n - 1) 
unknowns at the second meridional station (V2t2, V3i2, • • • , 
V„i). Solving these simultaneous linear algebraic equations 
by any kind of matrix inversion techniques (Thomas' method 
[15] was used in our program), we obtain the unknown values 
of Vs at all points of the second meridional station. 
Similarly, using the computed values of Vs and applying (10) 
with / = 2, 3, . . . , n, we obtain the unknown values of LPs at 
the second meridional station (/ = 2). Using the computed 
values of Vs and applying (9) with / = 1, 2, 3, . . . , « , the 
values of Ws at the grid points of the second meridional 
station are obtained. Repeating this procedure, we can ad
vance, step by step, along the sphere surface until the 
separation point (at which dU/dZ\0 = 0) is reached. 

For the selection of n at each meridional station (J) an 
iterative type method is used. In this method the criterion of 
solution is the asymptotic matching between the computed 
meridional velocity distribution U and the corresponding 
theoretical potential distribution U* within an arbitrarily 
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Fig. 3(b) Meridional velocity development for Ta/Re2 = 500 
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Table 1 Comparison between the results of Schlichting [8] 
and those of the present analysis for the dimensionless torque 
coefficient and the separation angle 

Fig. 5 Separation angle against Ta/Re2 for Re = 10000 

accepted accuracy of at least 0.005. In other words, the value 
of n should be large enough so that the computed meridional 
velocity distribution U is close in tangent at the uppermost 
point (n + 1), within the arbitrarily chosen accuracy, to the 
potential distribution U*. Thus the value of n depends on the 
accuracy desired and the selection of n is more or less of a trial 
process. For a given value of n, once the computations have 
been carried out for the LPs and the asymptotic matching was 
not attained, the value of n could be increased, the com
putations again performed and the computed LPs accepted if 
the asymptotic matching criterion is satisfied. 

Results and Conclusions 

The numerical calculations were carried out for Reynold's 
number of 10000, and for the spin parameter Ta/Re2 ranging 
from zero, the case of a stationary sphere, to 10000. It is 
known that large gradients exist near the stagnation point and 
also near the separation point (at which dU/dz\o = 0). 
Therefore, near these two points the step sizes in the 
meridional and radial directions were chosen to give Ad = 0.1 
deg and AZ < 0.0005, respectively. However, far downstream 
of the stagnation point and upstream of the separation point 
the step size in the meridional direction was usually chosen to 
give Ad = 1 deg, while that in the radial direction (Az) was 
0.001. In all the computer runs the initial value of n (i.e., 
value of n atj= 1) was chosen equal to at least 20 increments. 
During computation the asymptotic matching criterion was 
checked at each meridional station (/) and the value of n was 
increased if necessary until n attains its final maximum value 

Ta/Re2 

0 
0.0625 
0.2500 
0.5625 
1.000 
1.4884 

Present 
analysis 

0 
0.513 
0.257 
0.170 
0.126 
0.104 

CM 

Schlichting 

-
0.517 
0.256 
0.170 
0.127 
0.103 

es 
Present 
analysis 

107.0 
106.5 
106.2 
105.4 
104.5 
104.0 

degree 

Schlichting 

108.2 
108.0 
107.3 
106.2 
104.9 
103.5 

at the separation point. For example, this final value of n 
reached 42, 52, and 64 for Ta/Re2 = 10000, 5, and 0, 
respectively. Due to space limitation, only a sample of the 
results will be given here for the purpose of illustration. 

Development of the Meridional Velocity Component 

Figures 3(a)-3(fr) represent the developing meridional 
velocity distribution U corresponding to values of the 
parameter Ta/Re2 = 1 and 500, respectively. In each figure, 
curves corresponding to some selected values of the dimen
sionless radial distance from the wall (Z) are drawn. Suf
ficient values of this radial distance were selected so that 
accurate reconstruction of velocity profiles, similar to those 
presented in Figs. 3(c)-3(d). could, if desired, be carried out 
by cross plotting. Examples of the developing meridional 
velocity profiles are presented in Figs. 3(c)-3(cf), each of 
which corresponds to a specific value of the parameter 
Ta/Re2. It is clear from these figures that the radial distance 
from the sphere's wall (Z) required for attaining the matching 
between the computed velocity profile and the corresponding 
potential velocity profile increases with the meridional 
distance X (i.e., 6). This means that the required number of 
radial increments n increases with j and implies that the 
thickness of the meridional boundary layer formed on the 
wall increases with the meridional distance. 

On the other hand, it is clear, from the aforementioned 
figures, that the parameter Ta/Re2 has significant effects on 
the developing meridional velocity profiles. In order to show 
such effects more clearly, the meridional velocity profiles are 
redrawn in Fig. 4 at a selected meridional position (i.e., a 
selected value of 6) for various chosen values of the parameter 
Ta/Re2. It is evident that, at a given meridional position, as 
values of the parameter Ta/Re2 increase, the effect of the 
rotating wall on the meridional velocity profile becomes 
increasingly significant. At high values of Ta/Re2 the fluid 
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accelerates within the boundary layer as if there were blowing 
from the sphere's wall. Such a phenomenon may be attributed 
to the fact that the higher the value of Ta/Re2 the greater is 
the centrifugal force and hence the more is the fluid trans
ported by centrifugal action from regions close to the rotating 
wall to adjacent regions, thus causing the acceleration of the 
fluid within the boundary layer. 

Finally, it is important to know the effect of the rotary 
motion on the position of the point of laminar separation at 
which dU/dZ\0 = 0 [8], For the chosen Re = 10000, Fig. 5 
gives the position of the separation point (6S) as a function of 
the spin parameter Ta/Re2 . From this figure it can be seen 
that, over the investigated range of 0 < Ta/Re2 < 10000 the 
separation point always lies behind the equatorial plane (0 > 
90 deg) and shifts forward as the value of the parameter 
Ta/Re2 increases. This conclusion agrees with the conclusion 
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of Schlichting [8] that the displacement of the separation 
point is due to the effect of centrifugal forces which, behind 
the equatorial plane, have the effect of an additional pressure 
increase in flow direction and therefore cause the separation 
point to shift forward. In Table 1, the only tabulated results in 
[8] for 6S are compared with the corresponding results of the 
present analysis at same values of Ta/Re2 . It is clear from this 
table that 6S values of the present analysis agree, within less 
than 1.5 percent, with those of Schlichting [8]. However, it 
may be worth mentioning here that the calculation method of 
Schlichting [8] fails for values of K , , , / ^ > 1.22 (i.e., for 
values of Ta/Re2 > 1.4884); the present method has suc
ceeded in obtaining solutions for very considerably larger 
values of Ta/Re2 as can be seen from the present results. 

Development of the Azimuthal Velocity Component 

Figure 6(a) represents the developing velocity distribution V 
corresponding to a value of Re = 10000 for a chosen value of 
Ta/Re2 = 50. Again, curves corresponding to some selected 
values of the dimensionless radial distance Z are drawn in this 

Table 2 Effect of Ta/Re2 on the resisting moment, 
frictional drag, and separation angle, Re = 10000 

Ta/Re2 CM CD 8s, degree 

20 40 60 

Fig. 6(a) Azimuthal velocity development for Ta/Re2 = 5 0 
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50 
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Fig. 7 Comparison between the present results and those of [8] for the 
wall shear stress components Tx and Ty 

figure. It is noticeable that these curves intersect the 8 axis at 
different points, where the points of intersection with high 
values of 6 correspond to the curves of higher values of Z. 
This, of course, is due to the fact that, near the stagnation 
point, only fluid in the vicinity of the rotating wall acquires a 
tangential velocity component and fluid far away from the 
rotating wall (i.e., outside the developing azimuthal boundary 
layer) will only move downstream until tangential momentum 
can be diffused into it due to the viscosity of the fluid and 
transported to it by means of radial velocity component and 
centrifugal action. In Figs. 6(b) and 6(c), azimuthal velocity 
profiles are drawn for Ta/Re2 = 100 and 500, respectively; 
all profiles start with a value of VIV0 = 1 at the rotating wall 
(i.e., Z = 0) and end with zero in the undisturbed fluid region. 
Velocity profiles similar to those presented in Figs. 6(b) and 
6(c) could be obtained by cross plotting in Fig. 6(a). From 
these figures one can see how the circumferential boundary 
layer develops. Also, a careful examination of Figs. 6(b) and 
6(c) indicates that the azimuthal boundary layer thickness 
decreases by increasing the rotation of the sphere (i.e., in
creasing the value of the parameter Ta/Re2). By analogy with 
a one dimensional fluid flow past a flat plate, this might be 
expected, since in that case, the boundary layer thickness is 
known to be decreased by increasing the fluid velocity in the 
longitudinal direction of the plate and therefore one may 
expect a similar effect on the azimuthal boundary layer 
thickness i.e., keeping the Reynolds number constant and 
increasing the sphere rotation would decrease the azimuthal 
boundary layer thickness. 

Wall Shear Stress in Meridional and Azimuthal 
Directions, Frictional Drag and Resisting Moment 

Over the range of 0 < Ta/Re2 < 1, Fig. 7 compares the 
present results for the dimensionless wall shear stresses Tx and 
Ty with the corresponding results of Schlichting [8]. It is clear 
from this figure that the results of the present analysis agree, 
within less than 5 percent, with those of reference [8]. 
However, to augment the information presently available in 
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Fig. 8(a) Dimensionless meridional wall shear stress against 
meridional distance for various values of Ta/Re 
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the literature, Figs. 8(a) and 8(b) give the variation of Tx and 
Ty, respectively, with the meridional distance (i.e., 6) over a 
wide range of the parameter Ta/Re2 . 

The frictional drag D may be determined by using the 
following equation, 

P*s 
D= \ 2irrtxdx, 

where x is the coordinate measured along the axis of rotation. 
Using this equation, the dimensionless drag coefficient CD 

has been computed and is given as a function of the parameter 
Ta/Re2 in Table 2. As can be seen from this table, the 
rotation causes a considerable increase in the frictional drag. 

Similarly, the resisting moment of a rotating sphere may be 
obtained from the following expression: 

M= -27T j r2tydx. 

Using this expression, the dimensionless torque coefficient 
CM has been computed and is given for various values of 
Ta/Re2 in Table 2. Also, Table 1 gives a comparison between 
the present results for CM and those of Schlichting [8] over the 
narrow range of Ta/Re2 for which Schlichting's solution 
technique is valid. The results of the present analysis for CM 

are in excellent agreement with those of [8] in this narrow 
range of Ta/Re2 . 

Scaling the Present Results for Other Values of Re 

Even though the computations were all done at one 
Reynolds number, viz. 10000, the results presented in this 
paper could be scaled for other values of Re. Since the two 
coefficients CM and CD are of particular interest to the 
engineer, the following paragraph explains how these two 
important coefficients could be scaled for other values of Re. 

It is shown in [8] that CM is in first approximation 
proportional to VRe2/Ta and inversely proportional to VRe. 
Thus, for a given Ta/Re2 , the value of CMVRe is ap
proximately constant regardless of the value of Re. Similarly, 
for a given Ta/Re2 , the scaled frictional drag coefficient CD 

VRe could be considered approximately constant in the 
Reynolds number range over which the laminar boundary 
layer theory is valid. Both values of CM VRe and CD VRe can 
easily be calculated for various values of Ta/Re2 from Table 
2. 
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Radial and Axial Variations in 
Transient Pressure Waves 
Transmitted Through Liquid 
Transmission Lines 
An implicit factorization method has been developed for solving numerically the 
complete two-dimensional Navier-Stokes and continuity equations for pressure 
transients in a slightly compressible viscous liquid contained in a rigid pipe. Two 
problems have been analyzed: (1) The stopping of a steady Poiseuille flow by 
closure of a valve, and (2), the initiation of a nearly rectangular pressure pulse at 
the end of the pipe. In problem (1), radial as well as axial pressure variations were 
found; nearly periodic damped waves exist at the centerline and at the wall, and are 
approximately 180 deg out of phase. Essentially plane waves are found for problem 
(2), regardless of whether the fluid is flowing or not, provided that the initial pulse 
magnitude is not too large; the results show that the viscous effects are concentrated 
in a thin boundary layer. 

Introduction 
The analysis of pressure wave propagation in liquid-filled 

tubes has received considerable attention due to engineering 
interest in the behavior of fluid transmission lines and the 
design of hydraulic control systems. According to the linear 
theory of sound, pressure waves are propagated with constant 
energy and uniform wave velocity. The influence of viscosity 
tends to alter the acoustic waveform from that predicted by 
this linear theory. Firstly, the wave amplitude is damped due 
to wall shear resistance, and secondly, the viscous effects 
related to velocity gradients in the direction of flow smooth 
out any exceptionally steep portions of the wave. The former 
effect is usually referred to as dissipative and the latter is 
dispersive. 

In the early investigations the dissipative effect was 
modelled by the addition of a "quasi steady state" frictional 
resistance term to the wave equation. Numerical solutions 
based on the method of characteristics are applicable to the 
modified wave equation, as shown by Wylie and Streeter [1]. 
Zielke [2] discussed the shortcomings of this model and 
modified the resistance for frequency dependent viscous 
effects resulting from time-dependent pressure gradient. 
Brown [3], D'Souza and Oldenburger [4], and Holmboe and 
Rouleau [5] solved the continuity and the axial momentum 
equation. This theory describes the frequency-dependent 
viscous effects but does not include the dispersive viscous 
effects related to the axial velocity gradient. Walker, Kirk-
patrick, and Rouleau [6] showed how the dispersive effects 

Contributed by the Fluids Engineering Division and presented at the Sym
posium on Numerical Methods for Fluid Transients, Houston, Texas, June 1983 
of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by 

the Fluids Engineering Division, May 9, 1983. 
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smooth out steep wave fronts. In all these investigations the 
radial variation of pressure is neglected and the nonlinear 
convective effects are not considered. 

In the present paper the complete Navier-Stokes equations 
are solved numerically together with the continuity equation. 
The model appropriately includes the dispersive and 
dissipative effects of viscosity and enables one to gage the 
effects of nonlinear convection and radial variation of 
pressure, which in some cases are found to be substantial. 
Regarding numerical schemes, it has been observed that the 
stability criterion severely restricts the time steps of explicit 
schemes, and the solution of large matrix equations is 
necessary for the implicit schemes. Both result in large 
amounts of computation time. Here we use the implicit 
factored scheme proposed by Warming and Beam [7]. In this 
implicit method the time step is not severely restricted and 
simultaneously the order of the matrix equations is reduced 
due to the factorization. 

Basic Equations 

The equation of mass conservation and the equation of 
state for a slightly compressible liquid are: 

dp dp dp / du' dv' 
+W -r- + V —- +p( —- + ^— 

dt dx dr \ dx dr r T ) - * (1) 

djy_ 

dp 
= a0

2, (2) 

where p, p', u', and v', respectively, are density, pressure, 
axial velocity, and radial velocity, t is time, x and r are axial 
and radial coordinates. In the water hammer problem, x is 
measured positively from the valve toward the reservoir. a0 is 
sonic velocity, which is constant for liquids, and k is the bulk 
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modulus . The equation of state may be used to transform all 
density derivatives into pressure derivatives. The transformed 
continuity equation is 

dp' dp' 
—n—1-« -^r~ 
dt dx 

dp' / d u ' dv' v' \ 
+ v' ~ + k ( + —~ + — = 0 . 

dr \ dx dr r / 
(3) 

The axial and radial momentum equations are: 

du' 

~d7 
+ u' 

du' 

~dx 
+ v' 

d2u' 

~dxT 

du' _ 1 

dr p 0 

1 d / du' 

dp' u 

dx po 

d 

Yr 
/ du'\ 1 3 / 1 3 \~| 

(4) 

dv dv dv 
Hw — \-v ——-

dt dx dr 

1 dp' 

1 

L 3~ 
+ • 

Po dr 

4 d 
+ T ~dr 

Po 

1 

( 7 5 "•'>)]• <5> dxdr ' dx2 ' 3 dr V r dr 
where p 0 is the mean density and ft is the viscosity. Now we 
construct the dimensionless variables and state the initial and 
boundary conditions for the water hammer and the pressure 
pulse problems. 

Propagat ion o f Short Pu l se 

The dimensionless variables are chosen as u = u'a0p0/p0, v 
= v'a0p0/p0,p = (p' - p'e)/Po, S = x/R, n = r/R and 7 
= a0t/R wherep 0 is the peak of the input pressure p u l s e , p ' e 

is the pressure at x = 0, where the input is fed and R is the 
radius of the pipe. Equat ions (3), (4), and (5), when written in 
terms of the dimensionless variables, become 

du 

( 7 

dp du 

dr 3£ 

dp_ 

d\ 

d2u 

+ 

dp_ dp_ 

drj )• 

3£2 

dv _V_ _ / 

dr] ri V 

/ du du \ 

1 3 / du \ 1 3 / 1 3 \ \ 

77 3i) V 3i) / 3 3 J V i) 3i) / / 

(6) 

(7) 

dv dp / 
-\ = —A[ u 

dr dv V 

dv dv 

d£ 3r; 

4 3 / 1 3 

3 3i) \ 1) 3?; 

N o m e n c l a t u r e — 

+ 

32« 32y 

3^3r) 3?2 

(8) 

= 0, y : 
3/? 

= 0, — = 0 at ?y = 
3ij 

0. (10) 

In the above equations A = Po/poOo2 and H = v/Raa, where 
p is the kinematic viscosity. 

The no-slip condition at the wall of the pipe is 

u = 0, v = 0, at T? = 1 (9) 

and the symmetry condition at the axis of the pipe is 

du 

3r/ 

Two kinds of initial conditions can be considered. One 
corresponds to initial stationary fluid in the pipe and is given 
by 

u = 0, v = 0, p = 0 at T = 0 . (11) 

The other corresponds to initial Poiseuille flow in the pipe and 
is given by 

M = 2 0 J 2 - 1 ) , V = 0, p = s m at r = 0. (12) 

The input pulse at £ = 0 consists of three parts; first is a 4th 
order rise given by 

2 / ,- \ 2 1 

-r0/ \ Tn/ 2 

second is a steady top 

1 5 

p=16(—) ( l - — ) ; 0 < T < 
V T0 / \ T0 / 

TO (13a) 

P=U 2 T°<T<YTo' (136) 

(13c) 

and third is a 4th order d rop given by 

/ T - 2 T 0 \ 2 / r - 2 r 0 \ 2 5 
p = 16( ) ( 1 1 ; — T 0 < T < 3 T 0 . 

The total input durat ion time is 3 T 0 . 

Water H a m m e r 

The dimensionless variables are chosen as u = u'/u0, v = 
v'/uQ,p = (p' - p'e)/PoUoa0, £ = x/R, 1} = x/R and T = 
a0t/R, where u0 is a reference velocity. Although these 
variables are quite different from the pulse variables the 
equations in dimensionless form are the same as equations (6), 
(7), and (8). The parameter H remains unchanged, but A is 
modified to A = u0/a0. 

The same no-slip condition (9) and symmetry condition (10) 
apply. The initial condition is Poiseuille flow in the pipe, 
given by 

u = 2(v
2-l), v = 0, p = 8H£ at 7 = 0. 

The valve at £ = 0 stops the flow in the pipe as 

(14) 

A 

H 

pulse 

P = 
P'e = 

Po = 

sonic velocity 
PQ/POOO2 for 

problem 
u0/a0 for water hammer 
problem 
v/Ra0 

s u b s c r i p t s , d e n o t i n g 
spatial step 
bulk modulus 
s u p e r s c r i p t , d e n o t i n g 
time step 
dimensionless pressure 
ip' - P'e)/Po for pulse 
problem 

( P ' ~ P ' e ) / P o " o « o for 
water hammer problem 
pressure 
pressure at x = 0 
p e a k of t he i n p u t 
pressure pulse 

P' 
r 

R 

Rx,R2,Ri 

t 
u 

u 
«0 
u* 

v 

see equation (20) 
radial coordinate 
radius of the pipe 
functions, see equation 
(16) 
time 
d i m e n s i o n l e s s a x i a l 
velocity 
u'a0p0/p0 for pu lse 
problem 
u' /u0 for water hammer 
problem 
axial velocity 
reference velocity 
see equation (20) 
d i m e n s i o n l e s s r a d i a l 
velocity 
v'a0p0/p0 for pulse 
problem 
v' /u0 for water hammer 
problem 

v 
v* 
x 

V = 

H = 
v = 
P = 

Po = 
7 = 

To = 

radial velocity 
see equation (20) 
axial coordinate 
d i m e n s i o n l e s s a x i a l 
coordinate 
x/R 
d i m e n s i o n l e s s r a d i a l 
coordinate 
r/R 
coefficient of viscosity 
kinematic viscosity 
density 
mean density 
dimensionless time 
a0t/R 
related to input duration 
time; see equation (13) 
for pu lse p r o b l e m , 
equation (15) for water 
hammer problem 
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u = 2(rl
2-\)(l(Ky) - ^ f ) + I ) ; 0 < T < T 0 (15a) 

u = 0; T 0 < T (156) 

Now we proceed to the solution of equations (6), (7), and 
(8), subject to the initial and boundary conditions discussed 
above. 

Numerical Solution 

The right-hand sides of equations (6), (7), and (8) consist of 
the nonlinear convection terms and the viscous diffusion 
terms. The convection and the diffusion contain the 
dimensionless parameters A and H, respectively. The 
parameter H « 1 for both pulse and hammer problems. The 
parameter A « 1 for the pulse problem if the peak p0 « 
pQaQ

2 and for the hammer problem if the reference velocity u0 

« a0. As a result, the magnitudes of convection and dif
fusion terms are much smaller than the left-hand sides of 
equations (6), (7), and (8). In the numerical scheme the terms 
on the left-hand side are handled implicitly and the right-hand 
sides are handled explicitly. In the pulse problem for highp0 

the nonlinear convection should be handled implicitly and 
iteratively. This aspect is discussed quantitatively in the last 
section. 

Denoting the right-hand sides of equations (6), (7), and (8) 
by R1, R2, and R}, respectively, we write 

dp du dv v 
- i i + - — + -— + — = / ? „ (16a) 

or 05 at) 1} 

du dp 

or d£ 
(166) 

= R* (16c) 
dv dp 

dr dr) 

The time-derivatives are approximated by three-point 
backward formula given by 

3Z" + I - 4Z"+Z"~ = 2 AT 
/dZ 

\a^ 
dZ\n + l 

+ 0(AT3) , (17) 

where AT is the time-step and Z{T, £, ?/) = Z{nAr, £, ?j) 
= Z" (£, 17). The advantages of using the three-point backward 
scheme in the present transient problems are discussed by 
Mitra and Rouleau [8]. By using (17) we write (16) as 

2 9 2 / 9 
— A T — — AT 
3 da 3 ( £ + T ) 

2 a 
— AT — 

3 a? 

2 a 
— AT — 
3 dr, 

ry .+ i^ 

4 1 , 2 
— p" p"~' + — AT R," 
3 ^ 3 ^ 3 ' 

— U"-—U"-[+—ATR2" j- (18) 

3 3 3 ' 
4 1 , 2 

— v" v"-1 + — A T 7?," 
3 3 3 

The time marching scheme is started with Euler implicit and 
then is continued with three-point backward according to 
equation (18). 

The coefficient matrix in the left-hand side of equation (18) 
is approximately factorized to 

2 d n 
— A T — 0 
3 3£ 

2 a 
— AT — 
3 dk 
0 

2 /a J \ ' 
3 \di) i\ I 

0 
2 a 

— AT — 
3 dri 

1 

0 

0 

1 

(19) 

according to Warming and Beam [7]. It is shown by Warming 
and Beam that the formal accuracy of the time differencing is 
not upset by the approximate factorization. At this point we 
define 

0 
2 a 

— AT — 
3 dri 

1 

0 

3 
0 

1 

2 / 3 1 \ 
3 Van n / 

(20) 

Then 

2 3 
— A T — 0 
3 a^ 

2 3 
— A T — 1 
3 d£ 

0 

p*" 

u*" 

4 
irP"~ 
3 
4 
— u"~ 
3 

4 
— v"~ 
3 

1 
-TP"~ 
3 
1 

— u"~ 
3 

1 
— v"-
3 

' + 

' + 

+ 

2 
— A T ^ , " 
3 
2 

— ATR2" 

| A T * 3 » 

(21) 

Effectively, equations (20) and (21) signify the decomposition 
of a two-dimensional problem into two one-dimensional 
problems. We first sweep in the ^-direction and solve (21) to 
getp* 
solve (20) to get p"^ 

1; then we sweep in the ^-direction and 
,/; + 1 *yi + 1 

Now it remains to approximate the spatial derivatives in 
equations (20) and (21) by difference formulas. We use the 
upwind spatial difference scheme whose development for a 
one-dimensional system is given by Warming and Beam [7]. 
The scheme has been tested for the present transient problems 
by Mitra and Rouleau [8]. They have shown that the com
bination of three-point backward time differencing and 
upwind space differencing provides a method in which 
numerical dissipation is independent of time step size and 
proportional to space step size, and numerical dispersion is 
second order in both time and space step sizes. Thus, solutions 
represent real viscous effects, rather than the effects of 
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Fig. 2 Temporal variation of pressure at £ = 0.0 for the water hammer 
problem. Re = 100, H = 1.2 x 10 " 4 . 
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Fig. 1(b) 

Fig. 1 Radial variation of pressure at { = 0.0 for the water hammer 
problem. Re = 100, H = 1.2 x 10 " 4 . 

numerical viscosity, when space step size is taken sufficiently 
small. After factorizing the two-dimensional problem into 
two one-dimensional problems the use of the upwind scheme 
closely resembles that due to Warming and Beam. By 
denoting the right-hand side as (7*,", T2", T3" ] we write 
equation (21) as 

-

•H 

ro 

o 

1 

ro 

-̂  

' 

1 1 1 

/ 
Iw 

1 *" 

j 1 i 

/ , 

/ 
U>1 

3
.6 

I I I ' ™ 

1 \" l \° 

|M 1 
Icn I 

J . 1 -J-

i 

i 

* n+ 1 • 1 /du* " + 1 \ + 1 /du* n + i \ ~ 

^ 1 + T A T ( I T ),., + T A T ( W ),.J 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

P 
Fig. 3 Radial variation of pressure at i; = 2.0 for the water hammer 
problem. Re = 100, H = 1.2 x 10 ~ 4 . 

1 / dv " + i \ + 1 / dv " + 1 \ ~ 

In equations (22) and (23) the subscripts i, j mean Z(T, £, 
17) = Z(T, iA^,jAtf) = (Z(T) )itj where A£ and Aij are step 
sizes respectively in £ and i\ directions. The spatial derivatives 
in equations (22) and (23) are approximated by the formulas 

(22a) (-Xj = hlz'-j-z'-i-jh 
V a $ , 

1 /dp*" + l \ + 1 /dp*n + >\-

/du* « + i \ + 1 (du* " + 1 \ - , , _ , 

v i,j - ( • ' 3 > / , . / ' • 

Similarly equation (20) is written as 

1 / dv n + i\+ 1 / 3y »+i 
— AT! I + 

(226) 

(22c) 

( a | ) w ~ Af (Z ,+1- / Z / 'y ) ' 

/ a z \ + 1 

(24fl) 

(246) 

(24c) 

(24d) 

„ . . . / dv " + >\ + 1 / dy » + i \ -

2 A 
+ — AT 

3 

/ v "+1\ 1 / dp " + 1\ + 

(7 )u + TAT(*r ) V 

1 / dp " + 1 \ -

u f V + — A T 
dp " + ' \ + 1 

(23a) 

(236) 

Substituting expressions similar to those in equation (24) in 
equations (22) and (23) we get a set of simultaneous equations 
connecting the dependent variables p, u, and v. The right-
hand sides of equation (23), which are lumped convection and 
diffusion effects, are computed by approximating the partial 
derivatives by central difference formulas. 

The above simultaneous equations, which are the con
servation equations in the field, are solved at every time step 
together with the following equations derived from the 
boundary conditions. At the wall (rj = 1) the no-slip condition 
(9) is used for u and v, and for p the following condition is 
derived from the radial momentum equation (16c): 

/ dp « + <\ + 1 / dp " + ' \ ~ 

V d-q )' i.j 3 V dri / i,j 

dp_ 

di) 
=R* (25) 
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Fig. 4 Temporal variation of pressure at several axial stations for the 
pulse problem with input duration time 0.9. Peak of the input pulse p 0 

= 100psi, H = 4.0 x 1 0 " 7 . 
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Fig. 6 Temporal variation of pressure at several axial stations for the 
pulse problem with input duration time 0.6. Peak of the input pulse p 0 

= 100 psi, H - 4.0 x 10 " 7 . 
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Fig. 5 Axial variation of pressure for the pulse problem with input 
duration time 0.9. Peak of the input pulse p 0 = 100 psi, H = 4.0 x 
1 0 " 7 . 

At the axis of the pipe (?/ = 0) the symmetry condition (10) 
is imposed. For the pulse problem p is specified at t, = 0 
according to equation (13) and for u the following condition is 
derived from the continuity equation (16a). 

du dp 

d« dr 
+ R, (26) 

For the water hammer problem u is specified at £ = 0 
according to equation (15) and for p the following condition is 
derived from the axial momentum equation (166): 

dp du 

INPUT DURATION = 1.2 

a? 
+ R2 (27) 

.0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

Fig. 7 Effect of input duration time on temporal variation of pressure 

a t { = 1.0. Peak of the input pulse p 0 = 100 psi, H = 4.0 x 10 ~ 7 . 

The derivatives in equations (25), (26), and (27) are ap
proximated by suitable forward or backward second-order 
difference formulas. At any time T the wave would have 
propagated from £ = 0 to as far at £ = T. For all £ beyond 
this point the initial conditions exist. In the present 
calculations the initial conditions are imposed at £ = T + 
3A£. 

All the computations are done with AT = A£ = Ar; = 0.05. 
In the following sections the results are presented. Numerical 
experiment has confirmed that this value of A£ is small 
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Table 1 Comparison of pressure at valve from one-dimensional and 
two-dimensional models 

Re = 100, H • 1.2 X 10"" 

Pressure 
from one Weighted 
dimensional average p 
model of from present 
Holmboe and two-dimensional 
Rouleau [5 ] model 

1.0008 

1.0013 

1.0017 

1.0020 

1.0023 

1.0026 

1.002S 

1.0030 

1.0032 

1.0034 

0.4758 

1.0317 

1.0202 

1.0073 

1.0067 

1.0140 

1.0163 

1.0107 

1.0092 

1.0124 

Table 2 Effect of fluid viscosity on the shape of pressure pulse 
Input duration t ime 3r = 3.0, peak of the 

input pulse p = 100 psi 

Pressure 
at £ = 1, 7 = 0 

Low Moderate High 
Viscosity Viscosity Viscosity 
H - H = H = 
4.0 x 10 3.08 x 10~6 4.0 x 10~5 

0.1387 

0.4417 

0.7500 

0.9346 

0.9936 

1.0010 

1.0003 

1.0 

1.0 

1.0 

0.9996 

0.9915 

0.9347 

0.7521 

0.4481 

0.1718 

0.1390 

0.4430 

0.7523 

0.9364 

0.9942 

1.0010 

1.0001 

0.9999 

0.9999 

0.9999 

0.9994 

0.9913 

0.9340 

0.7504 

0.4460 

0.1705 

0.1390 

0.4426 

0.7513 

0.9349 

0.9926 

0.9994 

0.9986 

0.9983 

0.9983 

0.9983 

0.9979 

0.9897 

0.9325 

0.7490 

0.4450 

0.1702 

enough to ensure that the viscous effects are real, rather than 
numerical [8], 

Results 

We first present the results of the water hammer problem. 
We assume a fluid with kinematic viscosity v = 0.427 x 10~3 

ft2/s and sonic velocity a0 = 4345 ft/s flowing in a pipe of 
diameter D = 1 in. The reference velocity u0 is computed for 
Reynolds number Re = uQD/v = 100. The velocity at £ = 0 is 
varied according to equation (15) and corresponds to a valve 
closure with closing time r0 = 0.4. In Figs. 1(a) and 1(b) the 
radial variation of p at the valve (£ = 0) is shown for various 

T. The pressure at the axis of the pipe increases faster than the 
pressure at the wall. Axial pressure reaches the maximum 
value of 1.8 when the valve is completely closed at r = 0.4. 
The maximum value of 1.8 is almost twice the value of 1.0 
observed for frictionless liquids. This is because axial velocity 
in a Poiseuille profile is twice the mean velocity. Beyond r = 
0.4 the pressures at the wall and axis start oscillating. This 
oscillatory behavior is shown in Fig. 2. In Fig. 3 the radial 
variation p is shown for various T at J = 2.0. At this 
downstream station we observe oscillations similar to those in 
Fig. 2 but in a much smaller scale because of the viscous 
dissipation. All water hammer computations were started 
from an initial Poiseuille flow at T = 0 and continued up to T 
= 4. The time required on a DEC 2060 system is about 150 s. 

A comparison of the present results with the earlier one-
dimensional solution obtained by Holmboe and Rouleau [5] is 
desirable. As a purely heuristic procedure, the weighted 
average pressure/* at £ = 0 is computed as 

p( r , { = 0) = 2Jop(T,i,,€ = 0)ijrfi, 

and compared with Holmboe and Rouleau's solution in Table 
1. It should be remembered that their solution is for in
stantaneous valve closing whereas the present one is for cubic 
closing. Except for the initial and final portions of the pulse, 
the results are in close agreement. The weighted average 
pressure shows a slight oscillatory behavior as a result of the 
complex wave structures evident in Fig. 2. 

When not specified otherwise the pulse problem is con
sidered for a fluid with kinematic viscosity v = 0.44 x 10~4 

ft2/s, density p0 = 1.531 slug/ft3, sonic velocity a0 = 4420 
ft/s, pipe diameter D = 0.6 in., and peak of the pulse inputp0 
= 100 psi. As mentioned earlier, two kinds of initial con
ditions, given by equations (11) and (12), can be considered. 
Although computations have been done for both cases the 
results presented here correspond to the stationary fluid case 
of equation (11). However, when the initial Poiseuille velocity 
of the flowing fluid case, equation (12), is of no larger 
magnitude than the particle velocity produced by an input 
pulse, the difference between the flowing fluid case and the 
non-flow case is negligible. This, of course, is evident from 
the governing equations. The equations for the flowing fluid 
case differ from the stationary fluid case by having additional 
convection terms. These additional convection terms in the 
axial momentum equation are 

/ du dup\ 

In the above expression up is the initial Poiseuille velocity and 
u, v are the perturbations over the initial flow. Since A is of 
the order 0(10~4) the above effect is quite small unless up is 
very high. 

In Fig. 4 the variation of p on the axis of the pipe (77 = 0) 
with T is shown for several axial stations. The input pulse fed 
at { = 0, given by equation (13), which has the total duration 
time 3T0 = 0.9, is also shown in the figure for comparison. 
Since the pulse duration is short the boundary layer near the 
pipe wall is extremely thin and the propagating pressure wave 
is plane except at radial stations very close to the wall. The 
variation of p at £ = 1,2, and 3 clearly shows how the pulse 
amplitude diminishes and width increases as it propagates 
downstream. In Fig. 5 p at 17 = 0 is plotted against £ for 
several values of r for the same pulse duration time of 0.9. 
Figure 6 is similar to Fig. 4 except the pulse duration time is 
reduced to 0.6. A comparison of Figs. 4 and 6 reveals that for 
a pulse of shorter duration the pressure at any downstream 
station rises to a smaller peak. This effect is implicit in the 
analytical solution obtained by Holmboe and Rouleau [5]. 
Figure 7 explicitly shows the effect of input duration time on 
pressure; for pulse durations less than unity the peak pressure 
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is considerably less than unity. The effect of fluid viscosity on 
the shape of pulse has also been investigated and the variation 
of p at ?) = 0 with T for different fluids is given in Table 2. The 
overshoot in pressure is purely numerical. The table shows 
that an increase in viscosity causes a reduction in the peak 
pressure. 

Additional numerical experimentation revealed that if the 
magnitude p0 of the input is increased then the parameter A 
and thus the magnitude of convection increases. For A of the 
order 0(102) some unusual variations of pressure and 
velocity were noticed in the results. This probably signifies 
that the explicit treatment of the convection terms in the 
numerical treatment is not adequate. For density p0 = 1.7 
slug/ft2 and a0 = 4700 ft/s an ,4 of the order 0(10 ~2) roughly 
corresponds top0 = 5000 psi. 

Conclusions 

The numerical method developed here, based on implicit 
factorization, allows, for the first time, a two-dimensional 
solution for fluid transients in viscous, slightly compressible 
liquids contained in rigid pipes. The complete axial and radial 
Navier-Stokes equations have been solved, including the 
terms which represent convection and dispersion, as well as 
the dissipative shear terms. With the numerical method it is 
possible to include all these terms with but little extra effort. 
However, the explicit treatment of the convective terms limits 
the magnitude that can be accommodated. 

The significance of a complete solution is apparent for the 
water hammer problem, in which particle velocities are 
relatively high. Radial pressure variations are large near the 
valve. Upstream from the valve the radial variations decay, 
and the pressure wave tends to become plane. Dissipation and 
diffusion are apparent in the pulse problem, but the results 
show that an initially plane pressure wave remains essentially 
plane, for the peak pressures considered. A pulse that is 
initially rectangular, spreads and decays as it travels. This 
degradation could be a limiting factor in the design of 
transmission lines. 

The results indicate that the pressure waves tend to become 
plane in certain instances; that is, the radial pressure 
variations become small compared to the axial variations. It 
might seem that in these instances, the radial component of 
the Navier-Stokes equation could be dispensed with, yielding 
a degenerate plane wave model that would be simpler to solve 
numerically. However, close examination reveals that the 
boundary conditions for a viscous fluid, equation (9), cannot 
be satisfied by such a plane wave model. It follows that the 
radial component of the Navier-Stokes equations must be 
retained in order to incorporate the viscous and kinematic 
boundary conditions in a numerical solution. 
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Prediction of Propeller Cavitation 
Noise From Model Tests and Its 
Comparison With Full Scale Data 
This paper deals with the prediction of propeller cavitation noise from model ex
periments in a cavitation tunnel. The purpose was to investigate the validity of a 
simple scaling formula for high frequency cavitation noise, and to get information 
about the influence of test parameters and analysis methods. The results indicate 
that the scaling formula normally used at low frequencies can, as a first ap
proximation, be used also at high frequencies. Concerning analysis methods it is 
demonstrated that the noise signals in model and full scale may have different 
statistical properties, implying that the simple root-mean-square value of the model 
signal is not always a sufficient basis for prediction of full scale noise. 

1 Introduction 
Methods for prediction of propeller cavitation noise can be 

of mainly three different types based on, respectively: 

1) empirical data from a sample of propellers condensed 
into simple formulas or diagrams for estimation of the 
radiated noise, 

2) measurements of cavitation noise at model tests in, for 
example, a cavitation tunnel, or 

3) theoretical determination of the cavitation development 
and the corresponding radiation of noise. 

The validity of a method of type 1) is often restricted to 
configurations similar to those on which the method is based. 
To overcome this drawback development of more general 
methods was started and in this paper a method of type 2) is 
investigated. Important problems arising in such a method are 
those concerning the 

1) similarity of cavitation behavior of model and full scale, 
2) scaling formulas transforming model noise to full scale 

data and 
3) similarity of the acoustic properties of the model and 

full scale configurations. 

The purposes of the present investigation were: 

1) to test the validity of the theory at high frequencies (up 
to 300 multiples of the blade frequency/,), 

2) to determine of the influence on the noise of different 
test parameters (e.g., speed of water at model tests) and 

3) to investigate of the similarity of the individual pressure 
pulses as well as the statistical properties of the complete 
pressure signals. 

Contributed by the Fluids Engineering Division and presented at the Interna
tional Symposium on Cavitation Noise, Winter Annual Meeting, Phoenix, 
Ariz., November 9-14, 1982, of THE AMERICAN SOCIETY OF MECHANICAL 

ENGINEERS. Manuscript received by the Fluids Engineering Division, April 6, 
1983. 

The model tests, carried out at The Swedish Maritime 
Research Centre SSPA, were a part of a joint project in which 
also Det norske Veritas (DnV), Norway, The Ship Research 
Institute of Norway and The Danish Ship Research 
Laboratory (SL) took part. The full scale data used in this 
paper were produced by DnV and SL in cooperation with the 
East Asiatic Company of Denmark (ship owner) and Nakskov 
Shipyard, Denmark, that built the ships. The ships were the 
two single screw 32,000 tdw product carriers M/T Pasadena 
and M/T Patagonia built as sister ships, but equipped with 
different propellers. A summary of the activities within the 
joint project is given in [1] and the present paper is a 
developed version of [2]. 

2 Scaling of Cavitation Noise 
2.1 Foundations. Scaling formulas and their relation to 

bubble dynamics are discussed by several authors in for 
example the references [3-6]. The scaling formulas applied in 
this paper are based on the theory of radial motion of an 
inviscid and incompressible fluid outside a spherical cavity. 
Using certain assumptions, [3], [4], resonable in a first order 
model, the following formula for the scaling of the con
tinuous part of the power spectrum is obtained: 

Gs(fs) _ (rj\ \ 2 / Ps \
 l /2 / APS \

 3/2 

Gm(fm)~\r~rJ;J \p~,J I A / V X (1) 

For application to the measured sound pressure/? (f, A/) in 
a frequency band A/ around the center frequency / equation 
(1) transforms to 

/ PsifsAfs) \ 2
 = 

V,„vf„„A/„^ 

\rsD,„J \p,„) \AP,J A/„, 

If the analysis bandwidth A/is a constant percentage of the 

(2) 
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center frequency/(i.e., A/ = af, a = constant) equation (2) is 
reduced to 

/ Ps(fs,afs) V =( r„,Ds \
2 / APS\

2 

It can also be shown that equation (3) holds for spectral 
lines as well as for the continuous part of the spectrum, a fact 
making spectra with constant percentage bandwidth suitable 
for analysis of propeller noise. 

With certain assumptions about the cavitation process and 
its scaling, [3], [4], the pressure difference AP, driving the 
cavity collapse, can be substituted by a reference velocity V0 

or by the speed n of the propeller shaft. Equation (3) can then 
be written: 

\pm(f,„,afm)) \rsD,J \PmJ \V0mJ 

= (rjaPi) (EL) ( "sD* ) 
\ r,D,„ J V p,„ ) \ n,„D„, ) 

(4) 

Using the Rayleigh formula for the collapse time T of a 
vapour filled spherical cavity, the following expression for 
frequency scaling is obtained: 

k 
J m 

In 
7\ \ oJ V AP.„ / X K„.„ X — (5) 

Ps' ^AP„; 

According to this approximation the blade freequency/, = 
nz, can be used as frequency unit in the propeller noise 
spectrum. 

In the derivations of equations (1) and (5) it is assumed that 
the cavitation extents are identical in model and full scale at 
equal cavitation numbers. At well developed cavitation, this 
assumption is reasonable, (see [7]), but close to incipient 
cavitation, most model tests suffer from scale effects so that 
a5 > a„, at identical cavitation extents. The above formulas 
have then to be modified in accordance with the ideas 
presented in [4] and [5]. Owing to the simplifications the 
present scaling formulas are considered as first ap
proximations at high frequencies, while at the lowest 
multiples of the blade frequency ( £ 5/0 these formulas have 
shown to be entirely relevant ([7]). 

2.2 Application of the Scaling Formulas. By using any of 
the equations (l)-(4) the desired full scale quantity, as for 

example Gs(fs), is obtained directly when the corresponding 
model quantity is known. 

It can also be convenient to use certain nondimensional 
quantities and in accordance with equation (4) and the 
standard for low frequencies, the nondimensional pressure 
coefficient Kp is defined as 

jy- Prms 
p~pnJF2' 

(6) 

where plmH is the root-mean-square sound pressure. The 
corresponding level L(Kp) is expressed as 

L ( ^ ) = 201ogl06A-/, (7) 

With these quantities the full scale level L(ps) in the 
frequency band Afs = afs centered at the frequency fs = 
f,„ns/n,„ can be expressed as 

11 ^ -mi Psifs'Ofs) . „ , Pm(fm,afm) , L(ps) = 20 log — l n _ 6 = 20log r^—, + 
10" 

+ 20 log 

io-

r,„D, 

\ " A ' P,„ rsDmi 

+ 20\og(ns
2D 2p/-~)dBre\ati\e\0^6Va (8) 

Sometimes a transformation to levels in bands of 1 Hz 
bandwidth is made. If, however, the occurrence of spectral 
lines is not fully known, such transformed levels become 
uncertain and the data are therefore presented as 1/3 octave 
band spectra in the present paper. Utilizing the structure of 
the scaling principle as well as the percentage bandwidth, the 
results can be presented as in Fig. 1 showing the model as well 
as the full scale results together with the nondimensional 
quantities. 

3 Full Scale Measurements 

The noise signals, registered by the hydrophones protruding 
from the hull plating, were recorded on tape and analyzed in 
1/3-octave bands. No visual observations of the cavitation 
and limiting velocities for incipient cavitation could be 
performed at the full scale tests. The measurements were 
carried out on the Atlantic Ocean with sea state 2 for MIT 
Patagonia and 6 for M/T Pasadena. Sea state 2 has no 
significant influence on the propeller cavitation on a ship of 

Nomenclature 
a = constant relating bandwidth 

to center frequency in the case 
of proportional bandwidth 

D = propeller diameter 
/ = frequency 

/ i = nz = blade frequency 
A/ = bandwidth 

G(f) = power spectral density of 
pressure signal p(f) 

nD 
J = advance ratio of the 

K„ = 

propeller 

/'rms 
= nondimensional 

pn2D2 

pressure coefficient 

r rms 
L = 2010log 

Po 
sound pres

sure level in dB rep0 (p0 • 
10"6Pa) 

N = 
n = 

P„ = 

AP 
Pit) 

T 
t 

VA 

V0 

relative number of pulses 
rate of revolutions of pro
peller shaft 
vapor pressure of water 
static pressure in reference 
point 
Po-Pv 
pressure disturbance (sound 
pressure) 
root-mean-square value of 
P(0 
distance from source point to 
field point 
collapse time of a cavity 
time 
velocity of the ship 
advance velocity of propeller 
velocity of water in reference 
point 
mean velocity in test section 
measured by the tunnel 
venturimeter 

z = number of propeller blades 
a/as = relative gas content at at

mospheric pressure of the 
water in the cavitation tunnel 

X = Ds/Dm = geometric scale 
factor 

p = density of water 
p.. - p 

cavitation number 
0.5pJV 
where P0 is the static pressure 
in the undisturbed flow at the 
depth of the propeller hub 
cavitation number at incipient 
cavitation 

Subscripts 

m = refers to model scale 
5 = refers to full scale 
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this size, while sea state 6, with the waves on the quarter, may 
modulate the cavitation process considerably. 

g 180 

2 170 
Q. 

J 160 

150 

140 
10 20 50 100 200 500 Ik 2k 5k 10k 20k 40k 

I Frequency(model)(Hz) 

0.1 0.2 0.5 1 2 5 10 20 50 100 200 400 
I Non-dimensional frequency Wf, 

_J ^J 1,1 L J I ,_l , i I in , I L_I ^J 
1 2 5 10 20 50 100 200 500 Ik 2k 4k 

Frequency (full scale) (Hz) 

L ( p ) = 2 0 l o g — ^ d B re lo"6Pa(l/3 oct. band) 

L(Kp )=20logl06Kp=20log c
r r T 5 , 1 1/3 oct. band) 

106pnV 

Fig. 1 Example of scaling a 1/3-octave spectrum 

Fig. 2 SSPA cavitation tunnel No. 2. Low speed test section 
(dimensions in meters) 

4 Model Measurements 

4.1 Cavitation Tunnel. The model tests were carried out 
in SSPA large cavitation tunnel equipped with a test section 
permitting the use of a complete ship model. In this facility 
the ship model is completely immersed in water, and the water 
line is simulated by a 15 mm wooden board. The velocity of 
the water above the board is zero (Figs. 2 and 3). 

4.2 Ship Model. The wooden ship model was 6.89 m long, 
corresponding to a model scale of 1/23.7. 

4.3 Propeller Models. Two propeller models manufac
tured in bronze, with the diameter 0.236 m, were used at the 
tests. Propeller PI 831 is a model of the conventional propeller 
used on M/T Pasadena, while P1832, used on M/T 
Patagonia, is of a more unconventional design with large 
blade area, unloaded tips and skew back. Both propellers 
have 4 blades and a full scale diameter of 5.60 m. 

4.4 Measuring Equipment. The propeller-induced 
pressure pulses were measured by two hydrophones (1 and 4 
in Fig. 3) and two strain gauge pressure transducers (2 and 3 in 
Fig. 3). The pressure transducers were flush-mounted, and the 
hydrophones were placed with the nose toward the flow 
direction and mounted in small hollows, so that the acoustic 
center coincided with the surface of the hull. The transducer 
positions were identical with those on the ships, where 
hydrophones of same type were mounted in all four positions. 
All noise results shown in this paper are obtained from 
transducer No. 1 close to the center line in frame A. The 
signals were recorded on an FM tape recorder, and the 
resulting frequency range of the recorded hydrophone signals 
was 0.1 H z - 4 0 kHz. 

4.5 Tests Carried Out. Model tests were carried out at 
three water velocities and two gas contents a/as for the full 

Wooden board 

Fig. 3 Ship model. Position of propeller model and pressure 
transducers (dimensions in millimeters). 

Table 1. Some additional tests were also carried out in order 
to investigate the sensitivity of the cavitation noise to small 
variations in the cavitation number <rand advance ratio / . 

5 Comments on the Experimental Procedure 

As is well known, model tests considering cavitation cannot 
be performed with complete similarity between model and full 
scale and the development of methods of reducing these 
discrepancies or "scale effects" is therefore important. Some 
of these problems will be discussed in this section. 

5.1 Cavitation Extent. The discrepancy between model 
and full scale of the cavitation extents can be expressed by 
<7j/o„,, as, and am being the cavitation numbers at identical 
cavitation extents in full and model scale respectively. as/am 

Table 1 

Ship 

Condition 
"VA 

J A 

Kj(knots) 
«J(r/min) 

N in Full scale 

" 
" 
" 
" 
" 
" 
" 

Model 

, 
i a 

i n 

i n 

i a 

' " 

V, 
(m/s) 
4.5 
6.0 
7.5 
4.5 
6.0 
7.5 

Mean 

Relative number /V of sharp dominating pulses 

a/as 

0.4 
// 
" 

0.7 
/; 
" 

Pasadena (PI831) 

A, D[ B, 
19.5 17.9 15.3 
0.390 0.390 0.390 
14.8 15.3 16.3 
115.5 120.8 132.0 

1.00 1.00 1.00 

0.64 0.47 0.56 
1.09 1.07 0.72 
1.09 1.13 0.89 

0.94 , 0.89 0.72 

Patagonia (PI832) 

A2 D2 
17.7 16.3 
0.412 0.412 
14.2 14.3 
116.6 121.0 

1.00 1.00 

0.75 0.71 
0.67 0.50 
1.00 1.07 
0.67 0.71 
0.75 0.71 
0.83 1.07 

0.78 0.80 

B2 

13.7 
0.412 
15.8 
132.4 

1.00 

0.59 
0.76 
1.00 
0.47 
0.59 
1.06 

0.75 

Mean 

1.00 

0.62 
0.80 
1.03 
0.62 
0.68 
0.99 
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Fig. 4 Cavitation extensions at model tests. Conditions Bf and B 2 , 
respectively. 

= 1.0 expresses the vanishing scale effect meaning that the 
cavitation extents at model and full scale are identical at the 
same cavitation numbers. For the present facility and the 
experimental procedure, the upper bound ffs/a,„ * 2 can be 
expected close to incipient cavitation. At the cavitation extents 
of the present experiments it can, with reference to [7], be 
supposed that as/am is much closer to 1 than to the upper 
bound 2. The approximation as/a„, - 1 is then reasonable 
and the scaling formulas (4) and (5) are from this point of 
view justified. 

5.2 Cavitation Number Similarity. Generally Froude 
number similarity is not maintained in a cavitation tunnel of 
the present type implying that cavitation number similarity is 
obtained only at one single depth in the propeller disk. Ac
cording to SSPA practice this similarity is selected to be at the 
depth of the propeller hub. As a consequence the model 
cavitation number at the upper edge of the propeller disk 
becomes 15 percent too high and hence the cavity volume is 
slightly reduced in this position. 

5.3 Intermittency of Cavitation. It is often observed from 
films and pressure pulse recordings that the random 
variations in cavity size from one blade passage to another is 
larger in model than in full scale. It is also observed that the 
sizes of the largest cavities in model tests are mostly fairly 
similar to the largest full scale cavities. In model scale 
however, these fully developed cavities are more rarely ap
pearing and fewer significant pressure pulses per propeller 
revolution are therefore generated than in full scale. Since the 
root-mean-square value p r m s of the pressure depends on the 
pulse height as well as on the occurrence frequency, it is 
concluded that the use of p r m s from model tests in equations 
(l)-(4) may result in too low predicted full scale levels. 

If the insignificant pulses could be identified, the obvious 
solution would be to exclude them from the analysis. In fact, 
such a treatment of the signals is performed at SSPA for the 
prediction of low frequency pressure pulses from propellers 
[7]. In that method a digital procedure excludes the smallest 
pulses, resulting from for example noncavitating blade 
passages and the predicted full scale spectrum then 
corresponds to model values higher than the root mean 
squares. The criteria for exclusion of pulses are based on 
numerous comparisons of model and full scale data. 

5.4 Possibilities to Decrease Insignificant Intermittency of 
Model Signals. Much effort has been made at SSPA to 
minimize these scale effects and in summary it has been found 
that the intermittency of the model signal decreases when: 

1) a high water velocity is used, 
2) the propeller is coated with a matt paint, 
3) the ship model is equipped with a net stimulating the 
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Fig. 5 Pressure signals in the frequency range f^ - =300^ M/T 
Pasadena, (P1831), at full speed, (condition S-,) 

turbulence in the wake close to the propeller (Fig. 3) and 
when, 

4) the amount of cavitation nuclei is raised to a certain 
level by the use of an appropriate gas content of the 
tunnel water. 

5.5 Similarity of the Acoustical Parameters. The present 
paper deals mainly with the hydrodynamical aspects of 
cavitation noise prediction and the acoustical similarity 
problem is only briefly discussed. 

The main problem is that certain boundary conditions are 
hard to realize at model tests. For example the ship and the 
model were made of different materials (steel and wood, 
respectively) and the free water surface in full scale was 
simulated by water-wood-water interfaces at the model tests 
(Figs. 2 and 3). The corresponding errors, as well as the in
fluence of the relatively distant tunnel walls, can be reduced 
by an acoustical calibration of the tunnel as well as of the full 
scale ship. In the present project it was, however, not possible 
to perform this calibration in full scale, why the method could 
not be used. 

6 Results and Discussion 

6.1 Extent of Cavitation. An example of the cavitation 
extent of the propeller models is shown in Fig. 4. The cavities 
on PI831 are somewhat larger, and the cavity shape at <$> = 30 
deg, is such that large voids may break off and collapse 
violently in the way described in [8]. 

6.2 Comparison of Pressure Signals. For the estimation 
of the similarity of individual pulses and their statistical 
properties the time histories of the signals were traced out on 
paper. Short sequences of this type are shown in Figs. 5 and 6 
in which the amplitude scales are nondimensional according 
to equation (6). 

Figure 5 shows pressure signals corresponding to the 
frequency range / , - = 3 0 0 / , , i.e., all significant con
tributions to the signal are included. In Fig. 6 the low 
frequency part is subtracted by filtering through the band 
50/, - 210 / ! , meaning that the individual pulses visible in the 
clusters correspond to late parts of collapses and early parts of 
rebounds. On longer recordings it can be seen that for M/T 
Pasadena the full scale signals are less periodic than the model 
signals. A substantial modulation at frequencies between 0.1 
and 0.2 Hz is observed, supporting the assumption that the 
cavitation is disturbed by the ship motions in the waves (sea 
state 6). For M/T Patagonia, where the full scale 
measurements were carried out at calm conditions, the 
resulting signals were more regular than those from the model 
tests. 

By use of long recordings of the type shown in Fig. 6, an 
estimate was made of the occurrence frequency of sharp and 
high pressure pulses. The data presented in Table 1 are 
showing the relative numbers N per blade passage of high 
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Fig. 6 Pressure signals at high frequencies (50/i 
Pasadena, (P1831), at full speed, (condition S1) 

210fi) M/T 

pulses divided by the corresponding number in full scale 
signals (i.e., N = 1 at full scale). The conclusion from Table 1 
is that there is a significant tendency that the relative numbers 
TV increase towards unity with increasing water velocity, while 
no effect of the gas content a/as is observed. This does 
however not imply that the number of pulses is independent of 
the gas content in a wider variation. 

6.3 Comparison of 1/3-Octave Band Frequency Spectra. 
An elimination of effects due to different bandwidths in 
model and full scale is obtained by using a constant per
centage bandwidth at the spectral analysis. 1/3-octave bands 
were then considered adequate and the analysis was per
formed with an analog equipment, giving the rms level as a 
function of time for each frequency band during 5 seconds. 
The mean value of the rms level over this time is defined as the 
"mean" rms level, and equals the level normally referred to as 
the "rms level." The highest rms level during the 5 seconds is 
referred to as the "maximum" rms level. The introduction of 
these "maximum" levels is a demonstration of the fun
damental idea of using a larger value than the "mean" rms 
level for the prediction of full scale noise. In future analysis 
procedures quantities as "mean" and "maximum" should be 
more sharply defined, and also supplemented by statistical 
data on the pulse heights obtainable from a pulse height 
analyzer. 

Examples of data made nondimensional according to 
equations (5) and (7) are presented in Figs. 7 and 8, where 
"mean" rms levels are used from full scale as well as from 
model tests at three water velocities. The scaled model levels 
for MIT Patagonia (Fig. 7) are fairly close to the full scale 
data in a wide frequency range, while the model levels for 
MIT Pasadena are significantly below the full scale levels 
(Fig. 8). Similar results were also obtained for the conditions 
A and D. 

An explanation of the difference between the model and 
full scale levels for Ml T Pasadena is possible by supposing 
that the pulse height is amplitude modulated due to ship 
motions in waves as is proposed in section 6.2. An increase of 
the rms level in full scale is then predicted by the theory of 
amplitude modulation also if the mean value of the pulse 
heights are not changed by the waves. 

Referring to the discussion in section 5.3 the full scale levels 
(mean rms) are finally compared with the "maximum" rms 
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(mean rms levels). Comparison of full scale data (filled symbols) with 
model data at three water velocities (open symbols) for M/T Patagonia 
(P1S32) at full speed (condition B2). 
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Fig. 8 Nondimensional noise presented as L(KP) in 1/3-octave bands 
(mean rms levels). Comparison of full scale data (filled symbols) with 
model data at three water velocities (open symbols) for M/T Pasadena 
(P1831) at full speed (condition B^). 

levels from the model tests in Fig. 9. A comparison with Fig. 7 
shows a moderate influence of using "maximum" levels for 
predictions. 

6.4 Influence on the Noise Levels of Water Velocity and 
Gas Content at Model Tests. An inspection of Figs. 7-10 
reveals that the levels at blade frequency in most cases in
crease with water velocity, while the tendency in the rest of the 
low frequency range varies somewhat. At high frequencies (> 
50/"i) the observations are disturbed by a spectrum waviness 
not scaling with equation (5). Long recordings of the type 
shown in Fig. 6 indicate however that the scaled pulse height 
as well as the occurrence rate (Table 1) increase with the water 
velocity. An increase is also observed in Fig. 12, where the 
influence of spectrum waviness is reduced by omitting the 
frequency scaling (discussed below in section 6.6). 

A comparison of Figs. 7 and 10 in the high frequency range 
indicates that the influence of the gas content of the tunnel 
water was negligible at 6.0 and 7.5 m/s, while at 4.5 m/s and 
the higher gas content (ot/as = 0.7), the amount of free gas 
bubbles in the test section was large enough to disturb the 
measurements at high frequencies. The conclusion is that 
a/a^ = 0.4 was a sufficiently high gas content in this case, 
and that a substantial increase above an optimum alas should 
be avoided. 

6.5 Sensitivity of Noise to Variations of Cavitation 
Conditions. For some reasons the loading condition a and J 
of the propeller is only known to a certain approximation, 
and it is then of interest to know the sensitivity of the noise to 
variations in a and J. Such data are given in Fig. 11, showing 
firstly that the greatest sensitivity of levels to cr-variations 
occurred between 2 and 6 multiples of the blade frequency, 
and secondly that the sensitivity at the high frequencies was of 
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Fig. 9 Nondimensional noise presented as L{Kp) in 1/3-octave bands. 
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Fig. 10 Nondimensional noise presented as L{Kp) in 1/3-octave bands 
(mean rms levels). Comparison of full scale data (filled symbols) with 
model data (open symbols) at three water velocities and extra high gas 
content (<x/«s =0.7) for M/T Patagonia (P1832) at full speed (condition 
B2). 
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Fig. 11 Variation of o-at J = 0.412. Model tests M/T Patagonia. 

similar order as at the blade frequency. Also the /-variations 
generated similar results. 

These results are expected to be general within certain 
intervals, but surely they do not hold at conditions close to 
incipient cavitation or at conditions where the cavity 
dynamics changes rapidly as for example where break off 
develops as described in [8]. 

6.6 Spectrum Form. Figures 7, 8, and 9 demonstrate that 
the main forms of the model and full scale spectra are fairly 
similar. In the model results for M/T Patagonia it is, 
however, observed that the peak around five multiples of the 
blade frequence was wider and shifted to a slightly higher 
frequency than in full scale. This means that some type of low 
frequency variations of the cavitation were more developed 
and faster in the model tests. By comparison of Figs. 7 and 10 

5 10 20 50 100 200 500 1k 2k 5k 10k 20k 40k 
Frequency ( Hz) 

Fig. 12 L(KP) in 1/3-octave bands. No scaling of frequencies. Con
dition B 2 , M/T Patagonia, P1832. 
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Fig. 13 Reflexion from a wet wooden board (from [9]) 

it is also noticed that this scale effect on the low frequency 
peak decreased slightly when the gas content a/as was in
creased from 0.4 to 0.7. Thus it is demonstrated that the 
highest possible gas content should be used to minimize this 
scale effect (compare section 6.4). 

It is interesting to note that no scale effect of the present 
type is observed in Fig. 9 showing the Pasadena results. In this 
case the scale effect is however supposed to be masked by the 
additional fluctuations which the full scale cavitation ob
tained due to the ship motions in the waves. 

The frequency of the peak around five multiples of the 
blade frequency scales according to equation (5), which is 
demonstrated in Figs. 7, 8, 9, 10, and 12. This is, however, 
not true for the wavy pattern between 10 and 30 kHz. In Fig. 
12, where no frequency scaling is applied, it is demonstrated 
that this wavy pattern in fact is independent of the shaft 
speed. 

In principle, this spectrum pattern could have been 
generated by sound wave reflexions at the model boundary as 
is demonstrated in Fig. 13 showing the pressure level 10-20 
mm in front of a 500 x 500 x 20 mm wet board of wood 
immersed in a 4 x 3 x 2 m water basin. These levels are 
compared with levels measured after removing the board. 
Using a gating system the influence of the reflexions from the 
basin walls was eliminated. The hull thickness of the present 
wooden ship model was about 50 mm, and the center of the 
hydrophone was located 5 mm from the hull surface. Sup
posing the interference pattern to be dominated by reflexion 
in the interface closest to the hydrophone, the minimum at 15 
kHz can be explained as being a node at a quarter of a wave 
length from the interface. The frequency and distance 
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correspond to a velocity of sound of about 300 m/s, which is a 
rather low, but not an impossible value in the partly bubble 
filled water. It is also observed that the simple relation of 
frequency to the shaft speed breaks down already around 
15/, - 3 0 / , ( = 2 - 4 kHz) (Figs. 9 and 12), corresponding to a 
yet lower velocity and sound or a reflexion in another in
terface. 

Another comment to the failure of frequency scaling is that 
the present way of applying equation (5) relies on the 
assumption that also the final collapse velocity is firmly 
related to the shaft speed. Objections may be raised against 
this assumption, and for example it is noted that Baiter 
proposed a different behavior of shock pulses in [3] (p. 22). 

The conclusion from this discussion is that the non-scaling 
spectrum waviness was probably caused by wave reflexions 
but there may also be other explanations. 

7 Sources of Error 

The following comments are made about the sources of 
error influencing the present investigation: 

1) The instrumentation errors at acoustical measurements 
were in model as well as in full scale tests typically 1 dB. 

2) The reading and plotting errors were typically £ 1 dB 
for the acoustical data. 

3) The scattering of the full scale data at repeated 
measurements was about 1-2 dB at high frequencies and 
the blade frequency, while it was 3-5 dB in the range 
2/, - 5/i. The corresponding model data were 1 and 2-3 
dB, respectively. 

4) / and a are known within ±6 and ±13 percent, 
respectively, which, according to Fig. 11 and its 
counterpart for ./-variation, corresponds to level errors 
of about l dB . 

5) Errors arise when the same standard frequency analysis 
is applied to model and full scale signals with different 
statistical properties. The tendency is normally that an 
rms analysis will provide too low levels for prediction. 
The difference between the "maximum" and the mean 
levels shown in Figs. 7 and 9 may indicate the order of 
magnitude of this error to 1-5 dB. 

6) The model levels at high frequencies are decreased by 
about 1 dB due to the Froude number effect discussed in 
section 5.2. This type of error can easily be compensated 
for by measuring at small a-variations as shown in Fig. 
11. 

7) The error caused by the lack of similarity in the 
boundary conditions may be estimated by acoustical 
calibrations. The standard method is to substitute the 
propeller by a loudspeaker calibrated in free field and 
then to compare the signal from this source with the 
signal from the propeller. Such calibrations have to be 
performed also in full scale, if the intention is to 
compare model and ship noise data. 

The importance of calibration also in full scale is 
demonstrated in [10], showing that the resonant 
vibration of hull plates may increase the pressure level 
outside a plate by 10-15 dB. 

From general considerations it can be expected that the 
simulation of the steel ship by a wooden model would 
decrease the measured model noise, while an increase 
would be obtained because the free water surface in full 
scale was simulated by water-wood-water interfaces. 
The net effect, depending on for example the transducer 
position, is not known at this stage. 

8) It is also remarked that Mach number similarity cannot 
normally be obtained in experiments of the present type 

meaning that relations between distance and wave 
lengths are not identical in model and full scale. The 
discrepancies are however moderate, and the effects on 
directivity and the extent of the near field may then be 
neglected. 

9) No problems occurred due to background noise being 
20-30 dB below the noise from the cavitating propeller. 

In estimating the total error it may be expected that 
those of types 1,2,3, and 4 are randomly + or - , while 
those of types 5, 6, and perhaps 7 lowered the noise in 
the model tests. Because of the uncertainty in some of 
the error estimations a summation is however avoided, 
and the conclusion is that further experience from model 
as well as full scale measurements is required for an 
estimation of the total uncertainty. 

8 Summary and Conclusions 

The following conclusions are made from the present 
experiments: 

1) Concerning the model test parameters it was found that 
the highest water velocity resulted in the best agreement 
with the full scale data. This is true for the pulse 
statistics (Table 1) as well as the spectrum levels (Figs. 7, 
8, 9). Two values of the gas content parameter were 
tested (a/as = 0.4 and 0.7). Apart from a slight in
fluence on the low frequency peak (section 6.6) the 
results were not very sensitive to this variation, in
dicating that a/as. = 0.4 was sufficiently high at the 
present conditions. If however the gas content is too 
high, the cavitation noise at high frequencies will be 
damped by the gas bubbles (Fig. 10), and if it is too low, 
the cavitation will be increasingly intermittent, which 
will cause difficulties at the analylsis. 

2) The shapes of individual pressure pulses were rather 
similar in model and full scale. The model signal con
tained however fewer collapse pulses per propeller 
revolution and then the root-mean-square value is not 
entirely significant for the prediction of full scale noise. 
Based on this observation, guidelines are discussed for 
an analysis procedure disregarding signal parts which 
according to certain criteria are insignificant. 

3) The spectrum shape is fairly similar in model and full 
scale. Discrepancies were however observed, and for 
example the peak around five multiples of the blade 
frequency was slightly shifted towards higher 
frequencies in the model tests. It was also found that the 
frequency was scaling with the shaft speed (or blade 
frequency) up to 20-40 multiples of the blade frequency, 
while the spectrum pattern was independent of the shaft 
speed at the highest frequencies. This behavior was 
attributed to wave reflexions at the hull or possibly to a 
development of collapse pulses different from that 
supposed in the scaling formula. 

4) Also if more experience is needed, the adopted level 
scaling seems to be adequate and, supplemented by 
refined methods of signal analysis and acoustical 
calibration, model tests of this kind seems to be useful 
for the prediction of the full scale noise. It is further 
concluded that, at most conditions, the sensitivity to 
errors in a and / was not larger at high frequencies than 
at the blade frequency. 
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D I S C U S S I O N 

H.-J. Baiter1 

Power density spectra of cavitation noise predicted from a 
model test will, in general, conform unsatisfyingly with 
corresponding spectra determined on full scale. As far as 
experimental faults can be excluded, the applied scaling 
relations must be blamed for the discrepancy. But it may be 
allowed to consider the scaling relations principally correct 
and only affected by some dissimilarity. In this case two 
questions arise. Can the influence of the dissimilarity be 
removed in advance by experimental means as surface 
roughness or artificial cavitation nuclei? And, if the occasion 
arises, can the dissimilarity be corrected for afterwards by 
modifications of the scaling relations? 

The last mentioned question is a main concern of G. Bark's 
paper. Based on usage developed at SSPA he suggests to scale 
the spectral level using a maximum rms sound pressure in
stead of a mean rms sound pressure. This takes into account 
that the blades of a model propeller occasionally refuse to 
produce cavitation noise when passing through the model 
ship's wake, whereas on full scale the noise production is 
much the same for each blade passage. Using maximum 
values of the rms sound pressure means to rate only those 
blade passages of the model propeller, which can be con
sidered representative with respect to full scale. 

To improve this modification to cavitation noise scaling for 
future practice, G. Bark suggests to base it on a more 
sophisticated pulse height analysis. However, not only pulse 
heights should be taken into account but also pulse widths. 
This appears particularly important with respect to the shape 
of the spectral hump, which typically appears in the low 
frequency range (in the results reported by Bark below about 
the twentieth multiple of the blade frequency). 

Fraunhofer-Institut fur Hydroakustik, Fed. Rep. of Germany. 

To point out this importance, the theoretical model of 
propeller cavitation noise proposed in [11] may be helpful. 
Irrespective of how far this model applies in detail, some 
general conclusions can be drawn from it. Due to these 
conclusions the width of the spectral hump as well as its 
location along the frequency scale depend on characteristic 
time parameters of the cavitation events occurring within the 
blade passage periods. One of these parameters is in any case 
the overall duration of the cavitation noise events. In ad
dition, the duration of particulars can be of influence as for 
instance the duration of noise pulses generated by collapsing 
bubble clouds. Also typical retardations between different 
particulars come into question. Besides the mean values of 
such quantities also their standard deviations have to be taken 
into consideration. It is not unlikely that the one or other of 
these parameters does not conform with the assumed scaling 
rule for the time scale (Bark's equation (5)), and this could 
explain why the nondimensional plot of the spectral hump 
attains different shapes and locations for model and full scale 
(see Bark's comments "Spectrum Form"). 

Another possible reason for deviations from equation (5) is 
nonlinear effects during the final collapse phase of the single 
cavitation bubbles. As conjectured by Bark this influence may 
be responsible for the considerable spread of the non-
dimensional spectral plots fo Figs. 7-9 respecting the right-
hand flank of the spectral hump. Though this cannot be 
excluded so far, the above discussed parameters seem to offer 
a more obvious explanation. 

In my opinion the position of the right-hand flank of the 
spectral hump is mainly defined by the reciprocal of the mean 
duration of pressure pulses generated by collapsing bubble 
clouds. According to equation (5) the duration of such pulses 
should be proportional to the characteristic length. But the 
model and full scale data of Figs. 7-9 indicate a propor
tionality to some power of the characteristic length, the power 
being smaller than unity (in other words: the pulse duration in 
the model case is likely to be longer than it should be in 
correspondence with (5)). Similarly, according to equation (5) 
the pulse duration should be inversely proportional to the 
flow velocity. But the data of Figs. 7-9 indicate a propor
tionality to some power of the reciprocal velocity, the power 
being smaller than unity (in other words: performing model 
tests at constant cavitation number and increasing the 
velocity, the pulse duration is likely to be reduced to a smaller 
extent than predicted by (5)). Do the pressure signals observed 
in the full scale and model tests give evidence of such trends? 

Additional Reference 
11 Baiter, H.-J., "An Extended Base for the Statistical Description of 

Cavitation Noise," International Symposium on Cavitation Noise, ASME , 
Phoenix, AZ, Nov. 14-19, 1982, pp. 93-108. 

Author's Closure 

I generally agree to Baiter's 1st and 2nd paragraphs and 
will only add that it often seems necessary to improve the 
similarity not only by artificial means (surface roughness and 
a high density of cavitation nuclei) but also by using analysis 
methods taking account of the remaining dissimilarities. An 
approach of the latter kind is applied to the data in Fig. 9 of 
the paper. To obtain in the best similarity for the cavitation 
process, tests at SSPA are carried out at the highest possible 
velocity and gas content of the water. A small roughness on 
the propeller blades is also used as a standard. 

As Baiter claims in the 3rd paragraph, it is known from the 
spectrum theory that the width of the hump centered around 
five multiples of the blade frequency depends primarily on the 
pulse duration. Taking account also of scale effects in this 
parameter would result in more precise predictions of the 
spectrum form at certain frequencies, which of course is of 
interest in refined models. The use of a pulse height analysis, 
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due to those members of the staff at SSPA who took part in 
the work and to those who provided the full scale data. 
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ship's wake, whereas on full scale the noise production is 
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model and full scale data of Figs. 7-9 indicate a propor
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being smaller than unity (in other words: the pulse duration in 
the model case is likely to be longer than it should be in 
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being smaller than unity (in other words: performing model 
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process, tests at SSPA are carried out at the highest possible 
velocity and gas content of the water. A small roughness on 
the propeller blades is also used as a standard. 

As Baiter claims in the 3rd paragraph, it is known from the 
spectrum theory that the width of the hump centered around 
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as suggested in the paper, is only a method to reduce the effect 
of the fact that fewer pulses occur in the model tests than in 
full scale. To ignore this discrepancy will result in an un-
derprediction of the noise level. Based on observations of the 
pressure signals, the effect of fewer pulses occurring in model 
scale can, in the present case, be claimed to be more important 
than the scale effect on the form of the individual pulses, 
which was found to be moderate. 

In the 4th paragraph, Baiter points out that, according to 
the additional reference ([11]), the details of the spectrum 
hump depend on the mean values, as well as on the standard 
deviations of several parameters. In connection with this 
remark it should be noted that, in the model results, the peak 
of the hump is more independent of the water velocity than is 
the high frequency flank around twenty multiples of blade 
frequency. 

The higher the velocity, the lower is the frequency of the 
right end of the hump (Figs. 7-10). This result is in accordance 
with the idea of a stronger random modulation of cavitation 
events at lower water velocities, as reported in the paper, and 
hence the standard deviation due to this modulation of pulse 
parameters may be important in the present case. 

Concerning Baiter's last paragraph it can be reported that 
the dimensionless pulse duration of the dominant pulses 
responsible for the hump, is roughly independent of the water 
velocity. At the lower velocity (4.5 m/s) there are however a 
certain amount of pulses of roughly 20-30 percent shorter 
duration than at 7.5 m/s. The shaft speeds at these velocities 
were 25.7 and 46.2 r/s, respectively, meaning that the increase 
in pulse duration is not sufficient to explain the frequency 
shift of the high frequency flank. (The peak of the hump is 
not shifted significantly.) 

The influence of the scale effect on the pulse duration, 
combined with the widening of the hump due to modulation 
as discussed above, may however result in the observed 
behaviour of the spectrum around twenty multiples of the 
blade frequency. 

As stated in the paper, as well as by Baiter, there are several 
possible explanations of the deviations from the simple 
scaling theory. For a better understanding it is thought that 
specially designed experiments are needed in which the 
dynamics of the individual cavities, as well as the statistics of 
the whole process, are investigated with respect to the 
problems discussed above. 

120/Vol. 107, MARCH 1985 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Y. Ito 

Research Assistant. 

R. Oba 
Professor. 

Institute of High Speed Mechanics, 
Tohoku University, 

Sendai, Japan 

A Limited Role of Separation 
Bubble in Desinent Cavitation 
In order to clarify whether a separation bubble always plays an important role, the 
desinence of streamer-cavitation, a kind of attached-cavitation, was carefully in
vestigated in typical internal flows through venturies with and without a 40 p.m thin 
backward facing step under a prescribed cavitation nuclei as well as various 
hydrodynamic conditions. The following facts have been found: (/) the separation 
bubble can play an important role in the desinence only when the separation bubble 
thickness H is larger than the diameter of nucleus dnp that may grow up to a critical 
one [18], (ii) a marked change takes place in the desinent cavitation number ad due 
to the step, i.e., ad = \Cps\ forH > dnp but ad < \Cps\forH ^ dnp, (Hi) for the 
cavitation there are two geneses, i.e., the nuclei floating within the separation 
bubble and the bubble-cloud occurring in the reattachment-region. 

Introduction 
The mechanism of cavitation inception comes up as an 

essential problem, since the associated vibration, intolerable 
noise, and structural damage arise immediately when 
cavitation initiates. Relating to their hydrodynamic en
vironment, there are several types of cavitation-bubbles with 
their own aspects, behavior, geneses, as well as zones where 
cavities occur, resulting in a wide scatter in the desinent or the 
incipient cavitation number. 

According to the literature [1, 2], the cavitation does not 
always initiate at the point of minimum pressure, and often 
initiates in a region of higher pressure, near the transition or 
the reattachment-region of the separated laminar boundary 
layer. Recently, it has been suggested that the laminar 
separation bubble can play an important role in the inception 
of attached-cavitation [2-7], and that the cavitation number 
a,- should directly be related to the pressure coefficient at 
boundary-layer separation-point Cps as a, = \Cps\ [2, 3]. 
Meanwhile we have demonstrated somewhat singular facts 
indicating ad < \Cps\ in the desinence for the streamer-
cavitation [7], a kind of the attached-cavitation, in a typical 
flow through the venturi. It is, therefore, doubtful to the 
authors whether such a separation bubble plays always an 
important role in the desinence. 

In this paper, therefore, as the first step to clarify more 
precisely the role of the separation bubble and the cavitation 
nuclei in the desinent cavitation, the behavior of the 
separation bubbles and the related streamer-cavitation are 
carefully observed in typical internal flows through venturies, 
under prescribed flow conditions. 

Experimental Facilities 
The test was conducted in the existing closed-type water-

tunnel [7, 8] installed with a reservoir of large capacity. In 

Contributed by the Fluids Engineering Division and presented at the Interna
tional Symposium on Cavitation Inception, Winter Annual Meeting, Phoenix, 
Ariz., November 9-14, 1982 of THE AMERICAN SOCIETY OF MECHANICAL 
ENGINEERS. Manuscript received by the Fluids Engineering Division, May 17, 
1983. 

Fig. 1 Test venturies (all dimensions are in millimeters) 

order to control the freestream turbulence, which is known to 
be one of the powerful factors on the inception [9], a tur
bulence generating grid was installed 6 mm upstream from the 
venturi, in which a large number of 3 mm x 3 mm holes 
formed a net of 4 mm meshes on a 0.5 mm thin brass-plate to 
prevent cavitation at the grid itself. 

Two kinds of perspex-test-venturies were prepared for the 
present test, i.e., the smooth surface without a step and the 
stepped surface shown in Fig. 1. The smooth surface venturi 
had the throat-diameter DT of 10 mm and the throat length of 
29.7 mm, so that the area ratio (DT/28)2 = 0.128. The 
stepped surface venturi, however, has a 40 ^m thin backward 
facing step, as large as the cavitation nuclei, which was made 
slightly upstream from the boundary-layer separation-point 
measured on the smooth surface, in order to assure 
separation-bubble-occurrence there. 

Journal of Fluids Engineering MARCH 1985, Vol. 107/121 Copyright © 1985 by ASME
  Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0-06 
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Fig. 2 Nuclei-size-spectra of sample water (Uncertainties of «/«s and 
Nn are ± 5 and ± 10 percent, respectively) 

The upstream static pressure P] and the mean velocity C/] 
were always monitored at the section "A" by means of 
pressure transducers " C , " which were set through a pressure-
hole, 0.6 mm in diameter, 1 mm long, with a kind of silicone-
oil inserted to match the acoustic impedance. To detect 
cavitation events carefully, a PZT-probe "B" was fixed on 
the outer surface l D r downstream from the throat [8]. The 
local mean velocity U, the fluctuating velocity u and the 
turbulent intensity T„ = V iF / t / were measured by a Laser 
velocimeter. The nuclei-size-spectra in our sample water was 
measured by a Coulter-counter whose orifice made of ruby, 
was 0.2 mm in diameter and 0.15 mm long, while the relative 
air content ct/us was measured by Numachi's method [10]. 

Experimental Procedures 

The fresh tap water or the degassed one was first poured 
into the tunnel as described in references [7, 8], The nuclei, 
one of the most powerful factors [9], were checked after 3 min 
of water-recirculation under the constant pressure P{ of 100 
kPa, when the cavitation is expected to be stable, to determine 
whether or not the spectra fitted the prescribed one shown in 
Fig. 2. Figure 2 illustrates the typical nuclei-size-spectra, 
where N„ is the number density function. 

By considering the rather small test section as well as the 
corresponding thin separation-bubble-thickness,the flow 
patterns, especially the aspects of separation bubbles, were 
visualized by coating a very thin, 1 mm wide, oil-paint 
mixture over the venturi-throat-inlet [7]. 

The local pressure distribution was measured through 26 
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Fig. 3 Axial surface-pressure-distribution of test venturies (Un
certainties of Cp is ± 5 percent) 

pressure taps of 0.3 mm in diameter, which were precisely 
vertically drilled on the throat surface, from the inlet to the 
exit. 

Cavitation-inception was detected in the desinent state, 
both visually and acoustically, with the PZT-probe, and the 
cavitation aspects were photographed simultaneously with the 
corresponding flow-measurements. We used a high speed-
camera, whose maximum framing rate was about 44,000 
frames per second with a microscope of 10 magnification, and 
a 35 mm camera with a xenon-flash-lamp, whose exposure 
time was 3 /xs. 

The cavitation number a and the pressure coefficient Cp 

are, respectively, defined as a = 2{PT-Pv)/pUT
2 and Cp = 

2(P-PT)/pUT
2, where the pressure PT and the velocity UT 

were measured at the throat, X = 7 mm, in which the axial 
velocity and the turbulent intensity were almost uniformly 
distributed [7]. And P„ and p are the vapor pressure and the 
density of water, respectively. 

The range of test conditions was 0.09 ~ 0.45 for a, 5 ~ 20 
m/s for UT, so that Re = (0.7 - 1.93) x 105 where Re = 
UTDTlv (Reynolds number). The upstream static pressure Px 

was 5 0 - 1 9 0 kPa, the turbulent intensity TuT = Vj?/C/ r was 
0.005 or 0.024 and the upstream turbulent intensity Tul was 
0.021. The relative air content, a/as, was 0.3 or 1.0, so that 
(a/as) T was 0.9 — 6 at the throat and the water temperature 
t„ was 287 — 298 K, where v was the kinematic viscosity of 
water. 

Results 

Basic Flow Pattern. First, we will examine the oil-film 

N o m e n c l a t u r e 

CP = 
c = 

D = 
d„ = 

,crit -
dnp = 

H = 
h = 
/ = 

K, = 
P = 

P» = 
Re = 

^•e.crit ~~* 

Tu = 
tw = 

pressure coefficient = 2(P—PT)/pUT
2 

pressure coefficient at boundary-layer separation-
point 
minimum pressure coefficient 
diameter 
nucleus diameter 
critical nucleus diameter 
powerful nucleus diameter 
separation bubble thickness 
step height 
separation bubble length 
number density function of nucleus 
static pressure 
vapor pressure of water 
Reynolds number = UTDT/v 
critical Reynolds number^ 
turbulent intensity = *Jii2/U 
water temperature 

U — freestream velocity 
u = fluctuating velocity 

X = axial distance 
a / t t j = relative air content of water under the standard 

temperature and pressure 
v = kinematic viscosity of water 
p = density of water 
a = cavitation number = 2(PT-PV) IpUT

2 

o(l = desinent cavitation number 
T = time 

Subscript 

1 = upstream from venturi 
BE = beads 
SB = streamer-bubble 

SM = smooth surface without a step 
ST = stepped surface 

T = venturi-throat 
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Flg.5 Length I of separation bubbles (Uncertainty of lis ± 2 percent)

1As expected there is no marked change in Cp /1I"
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Fig. 6 Near·desinent aspects of cavitation on the stepped surface

bubble has to be a "long" bubble for Re < Re.crit> while it has
to be a "short" bubble for Re :? Re,crit [7], because the
Brennen-waves [IIJ showing the transition of boundary layer
were clearly observed on the streamer-bubble surfaces for Re
:? Re,crit·

Such a short-bubble, in which the transition and the tur
bulent reattachment result in a sufficiently high fluctuating
pressure, may play an important role in the cavitation in
ception [2-7J. Then, we tried to evaluate the separation
bubble thickness H defined by the maximum distance from
the rigid wall to the separated shear-layer. By using Tani's
analyses [12], the thickness for the smooth surface H SM is
estimated'to be about 0.02 mm, so that the corresponding
thickness on the stepped surface H ST == H SM + his 0.06 mm,
when we consider the step-height h == 0.04 mm. Then H ST ==
3HsM •

Aspects of Desinent Cavitation. A follow-up study by
Johnsson [13] demonstrated that a wide variety of incipent
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Flg.4 Oil·fIIm patterns on venturi-throat-surface for various Reynolds
numbers Re and turbulent intensities TuT

patterns as well as the pressure-distribution on the inner
venturi-surface, in order to identify the detailed aspects of the
separation bubbles which should be dominantly related to the
cavitation inception [2-4J. Figure 3 illustrates, the pressure
coefficient Cp versus the axial distance X/D T , in cavitation
free states for various Reynolds numbers Re at two typical
turbulent intensities TilT == 0.005 and 0.024. The results
include both cases with and without the thin step, where Sand
R in Figs. 3 and 4 show the boundary-layer-separation and the
reattachment, respectively. In Fig. 4 the oil-spots remaining
between Sand R indicate clearly the existence of a laminar
separation bubble, suggesting an evidence of three
dimensional flows. For the lower turbulent flow on the
smooth surface illustrated in Fig. 4, a number of streamerlike
slender oil-spots with almost uniform dimensions were cir
cumferentially arranged with almost equal spacing on the
throat. This suggests the existence of streamerlike separation
bubbles described earlier [7], while for the higher turbulent
flow such spots fluctuated somewhat in the positions, sizes
and numbers. Especially, for the stepped surface, the patterns
seem to be almost independent of Re or TilT, and the three
dimensional structure within the bubbles almost vanished.
While the minimum pressure coefficient' CPI11 was lowered by
0.1 on the average, the lower pressure zone was somewhat
lengthened, as is shown in Fig. 3. It is to be emphasized here
that the separation bubble is not only three-dimensional and
time-dependent in its major features, but also it is not
necessarily stationary in space.

Figure 5 shows the bubble-length I evaluated in the oil-film
patterns, comparing it with various Re and TilT' Here we
denote the subscripts ST and SM for "with the step" and
"without the step." Clearly on the smooth surface, the
bubble-length ISM changed rapidly in the range of critical
Reynolds number Re.crit from 0.9 x 105 to 1.1 X 105

, while
1ST on the stepped surface was held roughly constant at a fixed
TilT in the entire range of Re. Notice here that the separation

Journal of Fluids Engineering MARCH 1985, Vol. 107/123

Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0·7,----------------------,

1.0

---Time

0.5a

"l
"~ 0.1

E
E

Type b (F '<0,6, a/a."O.3

Fig. 9 Different genesis for the streamer·cavitation

+. -t" +.

~++•
., e-0'

0.4,-----------------~I:X-S--'BI""XB-£~IT=-u----'T
o 0 0.005

I. • 0.024
fJl 0 0 a 0 DO a
~ ~_~O_ ~O )O ":, _
~ • Beads c.
o -. •
~ O.3~.___ .~--_._----i-----
":;: .. . . .
S Reo1tochment-pt.
'0 A Streamer c.

1l. 0"'" 0 ~ ~ !Ii

"~ ~---~~~~~~-----------
"'6
:il
-'

Io
x'

0.20=-.-=8--:-'1.0=----1:-':.2:-----:-'.-'-=4-----'1.6'::------=-'1.8xI05

Reynolds number Re

Fig. 7 Occurring position of cavitation on the stepped surlace (Un.
certainties 01 XSB andXBE are ± 2 and ± 5 percent, respectively)

t· t:t-+

b' +...-".
... .+ .t-.... +;e +. t,e-,':'
~ + +."° t"'* ~
~ O. 5 ~'+!'~ • ... .• alos TUT (O'"dlsBJST (O"d)SB,SM {O"dlBE,sT

~ - 5. '" +
~ f-, , 0.3 ~:~~4' 9 +

~ T 10 ~:~~~ -=- ~ .~.
i 02r Ib! f ,0·.""" '" '0.... "'% I·, ·1

0-=.8:-----I.'-'O----'-I.'2:-----I.'-'4----'-1.6----1.8-xI05

Reynolds number Re

Fig. 8 A marked change in deslnent cavitation number Ud due to the
step (Uncertainty of Ud is ± 5 percent)

cavitation-aspects and great differences in the cavitation
number had been observed on the same ITTC standard body
in different test facilities widely distributed throughout the
world. A wide variety of the cavitation aspects have also been
observed in the present venturi without the step (14J. Here let
us investigate the separation bubble effects orithe aspects.

Figure 6 illustrates the near-desinent aspects of cavitation,
where ad is the desinent cavitation number and the subscripts
SB and BE denote the streamer-bubbles and the beads. The
desinent cavitation-bubbles are clearly classW:d by ad as well
as their aspects into the following three types, namely
streamer-bubbles, traveling bubbles and beads, so that such a
cavitation is said to be constituted multitudinously with three
types of cavitation. Of course, the three types of cavitation
have their original characters in their own zone and range in a.

The streamer bubbles occurred within the laminar
separation bubble for both cases with and without the step.
The leading edges were located near the separation point, as
shown in Fig. 7. The front portions were transparent, while
the surfaces were wavy in the range of Re ? Re,cril' breaking
up ultimately into a lot of microscopic bubbles immediately
downstream. As is shown in Figs. 7 and 8, the aspects and ad
depend principally on Re, as is to be expected from the fact
that the streamer-bubbles agree well with the oil-spots in
width and in number [7] and have highly Re-dependent
features. And it is remarkable that the aspects and ad' so that
this type of cavitation, are insensitive to the cavitation-nuclei
or ex/exs' as is similar to those of the band-or the sheet-type
cavitation [I, 2,4,51.

As is shown in Figs. 6 and 7, the beads appeared within a
very narrow region near the reattachment-point, as
microscopic irregularly-shaped bubbles rapidly appeared and
disappeared. The beads whose aspects seen to be scarcely
affected by nuclei or (X/ (xs are very similar to the transient
bubble-ring on a hemispherical nose [4] and occurred prin
cipally on the stepped surface. When the very narrow region

Time T ms

Fig.10 Critical behavior 01 powerful nucleus (Uncertainties of d n and
Tare ± 10 and ± 2 percent. respectively)

was full of the beads, the bubble-cloud with almost uniform
dimension came out circumferentially and developed up
stream as shown in Fig. 9.

The traveling bubbles observed here are not necessarily
spherical. They rapidly grow and collapse in the low pressure
region in the throat. The bubbles were observed mainly in the
lower velocity and the higher ex/ (Xs range on the smooth
surface, while they were scarcely seen on the stepped surface
with a higher H. Sometimes the streamer-bubbles were ab
sorbed locally or wholly into the traveling bubbles, resulting
in a drastic change into the large massive bubbles, as
described elsewhere [8, IS].

Desinent Cavitation Number. We investigate how the thin,
backward facing step affects the desinent cavitation number
ad' especially with respect to the streamer-cavitation.

Figure 8 plots the desinent cavitation numbers (ad >SB,ST,

(ad) SB,SM and (ad) BE,5T against Re for the two types of
cavitation, for various TilT, the nuclei-size-spectra as well as
both cases with and without the step. Notice here that the step
results in a marked change in (ad) SB' And the numbers tend to
increase slowly with Re, approaching an asymptotic value. It
is also remarkable that (ad) 5B is scarcely sensitive to the
nuclei-size-spectra or «X/(Xs) BE,ST is a little bit sensitive to the
nuclei, especially in a lower TilT and a higher Re. As
previously described [7], however, ad of the traveling
cavitation is very sensitive to the nuclei as well as the velocity
UT, especially in the lower UT-range.

Let us consider a possible factor of the marked change in
(ad >SB' by ignoring the secondary effects of the nuclei-size
spectra or (X/(Xs. As is clear in Figs. 3 and 8, (ad>S8,ST ==
1Cps, 5T I, but (ad) 58,SM < 1Cps•SM I. Here, the averaged value
of (ad) S8,ST and ICps,ST I is respectively 0.62 and 0.58 at Re =
1.5 X 105 for the low turbulent flow where the streamer-
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bubbles appear dominantly, while (ad)SB,sM a n d ICps 

0.18 and 0.47. The fact that (<T,/)SB,ST = lC p i S T I corresponds 
well to the results of a band-or a sheet-cavitation for 
hemispherical noses [2-4]. Arakeri et al. [16] reported on the 
hemispherical nose with a step that the incipient cavitation 
number CT, increased monotonically with the step-height h, 
through no information was given on the nuclei-size-spectra 
or the cavitation aspects. 

Two Geneses of Streamer-Cavitation. Let us focus our 
attention on the desinent process of the streamer-cavitation, 
from which the marked change results. 

Since the nuclei moved comparatively slowly within the 
separation bubble, we succeeded in" taking the nuclei 
microphtographs by means of the high speed-camera. Figure 
9 illustrates the photographs of the near-desinent process 
occurring on the stepped surface, and clearly shows two 
geneses for the streamer-bubble. That is to say, one is a fairly 
large freestream nucleus floating within the separation bubble 
(see Type " a " in the figure), while the other is a streamerlike 
bubble-cloud arranged circumferentially near the reat-
tachment-point (see Type "b"). The type "a" and "b" ap
pear usually on the stepped surface, and the type " a " takes 
place earlier than the type "b," while for the thinner HSM 

only the type "b" occurs very intermittently, corresponding 
to the suppression of the beads. The bubble-cloud consists of 
a huge number of extremely fine bubbles, a few micrometer or 
less in diameter, that might be holes statistically distributed in 
liquid [17]. 

Strasberg [18] demonstrated such a critical nucleus 
diameter diu cril to grow explosively. Here, let us consider the 
diameter d„p of the nucleus that may grow to d,u cril under 
locally fluctuating pressures at acoustic pressures at the 
pressure within the separation bubble Ps. In the following we 
call it "powerful nucleus." The pressure PA, at which the 
powerful nucleus begins to grow by rectified diffusion, was 
derived by the Hsieh-Plesset equation [19], as PA = 3/2 P,[l 
+ 4S/{d„pPs) — {a/us)]'/2. Here Sis the surface tension of 
water, and (a/as) is the relative air content at Ps. The values 
of (ce/as) are estimated to be 1.1 ~ 1.4 in the desinent state of 
interest, when a / a , = 1.0, Ps = 60 ~ 80 kPa and the 
measured value of PA = 4 ~ 8 kPa. Then, d„p is lying be
tween 20 /xm and 30 fim in the separation bubble, .so that HST 

> d„p,buiHSM ^ d,w. 
Though numerous nuclei are actually floating within the 

separation bubble, especially at the higher a/a,, or the higher 
Ur on the stepped surface, most of the nuclei of d„ > d„p or 
d„ < dnp grow explosively or collapse rapidly, while the 
nuclei of d„ = dnp behave critically, as shown in Fig. 10. 

Since the separation bubble thickness is three or four times 
larger than the powerful nucleus diameter on the stepped 
surface, such a separation bubble enables rather small nuclei 
to grow by rectified diffusion. Then, the necessary number of 
the powerful nuclei should be available for the inception 
initiated from the type "a." It is easy to find why (ad)SB s 
I Cps I. On the smooth surface where the beads or bubble-
cloud was seldom observed, on the contrary, such nuclei could 
not be available there, since the separation bubble is thinner 
than the powerful nucleus. Then, the inception principally 
depends on the type "b" which may grow at a considerably 
lower pressure than that for type " a , " so that (ad)SB 

< IC^I . 
Conclusion 

The mechanism of cavitation desinence, especially of the 
streamer-cavitation, is experimentally investigatged in typical 
internal flows through venturies with and without the step 
having only height as large as cavitation nuclei, under 
prescribed nuclei-size-spectra as well as various 
hydrodynamic conditions. The results are summarized as 
follows: 

1 The separation bubble can play an important role in the 
desinence of the streamer-cavitation, only when the 
separation bubble thickness is larger than the powerful 
nucleus-diameter dnp. 

2 The streamer-cavitation comes from the three-
dimensional structures within the separation bubbles, and has 
two different geneses: the powerful nucleus (Type "a") and 
the streamerlike bubble-cloud (Type "b"). 

3 The type "a" appear dominantly on the stepped surface 
where Hsr > d„p, and the type "a" may grow at a con
siderably higher pressure than that for the type "£>," while 
only the type "b" occurs very intermittently on the smooth 
surface for HSM = dnp. The desinent cavitation number 
(ffrf) SB is differently related to the pressure coefficient at the 
separation-point Cps, as follows: 

(ffrf) SB = I Cps I (dnp ^ H: Type a) 

(a r f ) S B <lC p j l (d,lp^H: Type b) 

4 The streamer-cavitation has highly Re -dependent 
features and (ad)SB is scarcely sensitive to the nuclei-size 
spectra or a / a J t while the desinent caviation number of the 
traveling cavitation with poor Re-dependent features is very 
sensitive to them, as described elsewhere [7]. The beads-
cavitation is intermediate in character between the former 
two. 
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D I S C U S S I O N 

B. R. Parkin2 

This discusser wishes to congratulate the authors for 
presenting a body of useful observations on cavitation 
desinence and separation bubbles. This work will be a source 
of information and ideas about the physical aspects of 
cavitation in the future. 

Referring to some of the experimental methods mentioned 
by the authors, first I ask is the Coulter counter technique 
used in these experiments the same as that described in the 
International Symposium on Cavitation Inception (1979)4? 
Second, can you offer a comparison of Numachi's method 
(authors' [10]) of dissolved air content determination and the 
use of the Van Slyke apparatus commonly used today? 

The present discusser questions the idea of liquid holes as 
cavitation nuclei cites. His reason is that the occurrence and 
disappearance of liquid holes is associated with time scales 
typical of the statistics of the liquid state. This characteristic 
life time is orders of magnitude less than any event associated 
with cavitation inception. Therefore, how can such holes 
produce cavitation nuclei? 

One last question concerns possible differences between 
inception and desinence in the separated flows under study. 
Did the authors observe any that they can discuss? One might 
suppose that the conditions for sustaining cavitation, once it 
is underway may be quite different from those required to 
start it - especially if inception is influenced by distributed 
nuclei in the flow. Were the terms inception and desinence 
used as synonyms in this paper? 
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1. Our Coulter-counter apparatus and its characteristics 
have been described in our previous papers,3 as you men
tioned. The more detailed informations can be seen in 
reference [A]. 

2. The Numachi's method [10, B] is the same as the Van 
Slyke's one [C] in principle. Numachi [B] gave his short 
comments for the Van Slyke apparatus. 

3. We called "the holes" the cavitation nuclei of ac
cumulated holes proposed by Finch [17]. It is not so-called 
"hole" corresponding to the absence of one molecule whose 
radius would be one-half of the mean intermolecular spacing 
and is in the state of the accumulation of holes, that a 
cavitation nucleus of critical size might arise. 

4. As shown in Fig. 11 [D], when comparing the incipient 
cavitation number (o-j)SBiSM is fairly different from (ad)SBiSM 

for our streamer-cavitation, while the difference is relatively 
small for the present stepped-surface. 

Authors' Closure 

First, the authors would like to Professor B. R. Parkin for 
his fruitful discussions and helpful comments. 
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3 ASME, New York, p. 147; see also, Oba et al., "Cavitation in an Extremely 
Limited Flow through Very Small Orifices," ASME JOURNAL OF FLUIDS 
ENGINEERING, Vol. 104, No. 1, Mar. 1982, pp. 94-98. 
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The Study of Propeller Cavitation 
Noise Using Cross-Correlation 
Methods 
This paper presents a technique for the study of the mechanisms responsible for the 
generation of noise from cavitating propellers. The experimental method, which 
involves the cross-correlation of the pressure gradient in the near-field of the 
propeller with the far-field sound, allows the determination of the spatial 
distribution of acoustic source strength on and near the cavitating propeller. The 
paper describes the mathematical basis for the cross-correlation technique, and then 
presents some of the results from experiments with propellers specifically designed 
to produce vortex and bubble forms of cavitation. Cross-correlations performed at 
a number of points along a track parallel to the axis of the propeller indicate that 
most of the noise from propellers producing vortex cavitation originates from the 
region of vortex collapse. A bubble cavitation propeller showed a region of 
relatively constant source strength distribution from the propeller disk region 
downstream to the point of vortex collapse. 

Introduction 

In recent years, the noise produced by hydrodynamic flow 
past rigid or flexible surfaces has been the subject of con
siderable interest. It is known that in noncavitating fluid flows 
the noise is produced by a variety of mechanisms, most 
notably fluctuating forces caused by variations in the 
magnitude and incidence of the inflow velocity. Other 
mechanisms such as incident turbulence, turbulent boundary 
layers, separated flows and vortex shedding may be important 
in noncavitating flows. These mechanisms can all be described 
as dipoles whose acoustic efficiencies are dependent upon the 
cube of the Mach number. 

In flows where cavitation occurs, these dipole mechanisms 
are of secondary importance to the growth and collapse of 
cavitation cavities. Cavitation behaves as a monopole 
mechanism whose acoustic efficiency is dependent upon the 
Mach number. In circumstances where the Mach number is 
small such as for the flow past a marine propeller, the 
monopole and dipole acoustic efficiencies are such that 
cavitation is the predominant source of noise. 

Cavitation on a marine propeller can appear in a number of 
forms. Three of the more comon types are vortex, sheet, and 
bubble cavitation. Vortex cavitation is generated in the low 
pressure regions of the hub and tip vortices. Sheet and bubble 
cavitation can occur on both the face and the back of a 
propeller blade. The back, however, is more likely to ex
perience these forms of cavitation owing to the low pressure 
on this side of the blade. The occurrence and the extent of 
these forms of cavitation are dependent upon the propeller 
design, the operating condition of the propeller, and the flow 
in which the propeller operates. During conditions of 
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moderate to high propeller loading, it is not unusual to find 
two or more types of cavitation simultaneously present on the 
propeller. 

In reduced-noise propeller design, attempts are made to 
avoid the noisier types of cavitation, and special design 
practices are adopted to control the noise produced by the 
remaining types. However, the effectiveness of the noise 
control is very much dependent upon the designers notion of 
the mechanism responsible for the noise generation. While it 
is generally agreed that cavitation noise is produced by the 
growth, collapse and rebounding of vapour bubbles, the issue 
becomes obscure when considering the more intricate sheet 
and vortex cavitation types. More precise knowledge of the 
mechanisms responsible for the noise and the distribution of 
sources on and near the blade should assist present effort in 
the field of propeller noise reduction. 

The study of propeller radiated noise due to cavitation on 
the propeller is presently carried out using two methods. The 
first, propeller viewing and sound ranging, is carried out on 
full scale ships. The propellers are viewed through ports in the 
bottom of the ship's hull, above the propeller. Ideally, sound 
ranging is carried out simultaneously. It is a fairly simple 
procedure to determine the spectral content of the first type of 
cavitation to occur on the blade. Generally, tip vortex 
cavitation appears first. However, if more than one form 
occurs, it is impossible to discriminate the contribution to the 
far-field signal from the various forms of cavitation on the 
blade. 

The second method used to study propeller cavitation and 
radiated noise is through model testing in cavitation tunnels 
and towing tanks. This procedure suffers from the same 
deficiencies as the full scale experiments; however, it has the 
added complication that the sound measurements have to be 
made inside the tunnel or tank. The resulting sound data 
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Fig. 1 Terminology for generalized noise source 

represent the near field propeller pressure field in a highly 
reverberant space. It is therefore difficult to obtain 
meaningful acoustic data over a wide frequency range and to 
discriminate between the source strengths of the different 
forms of cavitation. 

The present paper describes an experimental method for 
obtaining the acoustic source strengths of various forms of 
propeller cavitation and the results obtained from some tests 
with cavitating propellers. The method, based on Curie's 
formulation of flow noise theory [1], makes use of the cross-
correlation between the normal pressure gradient in the near-
field of the cavitation and the acoustic pressure in far-field. 
The technique is an extension of established methods for 
determining the acoustic source strength in aerodynamic 
flows about solid surfaces, in air jets, and on the surfaces of 
fan blades [2-5]. The method discriminates in favor of that 
part of the near-field pressure gradient fluctuation which 
contributes to the far-field acoustic pressure. Because the 
normal pressure gradient is directly proportional to the cavity 
normal velocity through Euler's equation, a direct evaluation 
of the local acoustic source strength, intensity, spectrum, and 
correlation area is possible. In this way the different forms of 
propeller cavitation can be studied independently leading to 
improved concepts of the physical mechanisms responsible 
for the noise, and to more accurate scaling laws and 
prediction techniques. The propeller designer, knowing the 
relative acoustic intensity and cause of each form of 
cavitation, will be better prepared to produce a design which 
discriminates against the noisier forms of hydrodynamic 
cavitation. 

Theoretical Development 

Application of Curie's General Aerodynamic Noise 
Equation. The acoustic radiation from a region of unsteady 
flow containing a surface is given by Curie's generalized 
solution to the Lighthill equation [6], (see Fig. 1), 

b .1 dS 
a0P ' ( X ' / ) = L [ S ( P B - ) ] 

5 

8X; 
[fi+pU,U„] 

dS 

4TX 

b2 

•t ^ 1 J i/L4irx.J 
dV (1) 

bx,bx 
where p ' is the incremental density disturbance relative to the 
ambient density p, and a0 is the ambient speed of sound. The 
square brackets denote evaluation at retarded time t = 
t—x/a0. The first two integrals are associated with noise 
generated by the flow passing over the surface S, which may 
deform with a velocity u„. The quantity/, represents the local 
stress acting at each point on the surface. The vector f may 
comprise both shear stress and normal stress components. 
The third integral is the Lighthill volume integral for tur
bulence-generated quadrupole noise where Ty, the effective 
stress tensor, is given by 

Tij=puiUj + Tij+(p-alp')biJ (2) 

where piijiij is the Reynolds stress, Ty, the viscous stress and 
(p — alp') by the thermal stress. 

In the geometric and acoustic far-field, where r2 > > S, 
and r > > X, the spatial derivatives can be shown to become 
time derivatives and r = (\ - y) ~ x such that 

p(x,t)<*—- \ [pu„]dS 
4-KX OS 

x, 
4irx2a0 i.[ 5/ 

Wi+pU,U„) dS (3) 

**-\ raw 
Hx3a0 iv L bt2 J 

For hydrodynamic flow noise, the quadrupole noise is 
minimal, and so attention is directed to the two surface in
tegrals. For cases where cavitation occurs on the blades and at 
low Mach numbers, the contributions from the second in
tegral are small giving 

P(*,t) = -.— [pu„ 
4-KX J s 

]dS (4) 

This equation gives the acoustic pressure produced by a 
monopole with surface velocity u„. For a propeller, acoustic 
radiation results from monopoles on and near the surface of 
the blade associated with the growth and collapse of 
cavitation. Because the surface velocity of the cavitation is 
difficult to measure, we substitute the normal pressure 
gradient by use of Euler's equation of linear momentum, 

1 
V/?„ (5) 

bt " p 

where V/?„ is the normal pressure gradient. Substituting 
equation (5) into equation (4) we obtain 

47T* 
p(x,t)~- — f [Vp„]dS 

4rx Js 
(6) 

Nomenclature 

«0 = speed of sound 
a]ta2 = amplitudes 

B = bandwidth 
/, ,f = local surface stress tensor, 

vector 
/o = center frequency 
p = far-field acoustic pressure 

or local pressure 
Vp„ = normal pressure gradient 

P = distance between source 
and far-field measuring 
point 

R.\y(T) — cross-correlation between 
variables x and y 

s 
T 

IJ t 
t 
u 

UhUj 

u„ 
V 
X 

X 

xh\ 

= surface 
= effective stress tensor 
= time 
= retarded time t = t — x/a0 

= velocity 
= velocity vectors 
= normal velocity 
= volume 
= dimensionless propeller 

radius 
= \=(x—y) distance from 

source point to far-field 
microphone 

= space coordinate to in-

y,,y 

5U 
X 
p 

p' 
T 

TU 

dicate point of sound 
detection in the far-field 
space coordinate used in 
source region 
Kronecker delta tensor 
wavelength of sound 
ambient density 
density fluctuation 
retarded time delay 
between two realizations 
of fluctuating variables 
viscous stress tensor 
a dot over a symbol in
dicates derivatives with 
respect to time 
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Fig. 3 Propeller drive and hydrophone layout 

The Causality Formalism. If both sides of equation (6) 
are multiplied by the far-field radiated pressure at a new time, 
t', time averaging yields 

(7) 

(8) 

p{t)p(t')~- — ( [Vp„(y,F)/?(x,r)]rfS 
A-KX is 

Up and Vp„ are stationary random variables, 

PPix.T) = - — j s [Vpnp]7+xlaodS 

where T = t—t' 
The expression for the mean square acoustic pressure is given 
when T = 0. Thus, 

1 

and, 

P2(x) = 

dp2 

~dS 

4irx Js 
[Vp„p]x/andS 

4TTX " 

(9) 

(10) 

Thus the contribution to the mean square sound pressure at 
a far field point x arriving from an element above the blade 
surface dS(y) where Vp„ is being measured is given by the 
integrand of equation (9). The quantity dp2/dS (equation 
(10)) may be viewed as the strength of the acoustic source at a 
near-field point, and for the case where the monopole sound 
radiation is dominant, it will be called the surface monopole 
source strength. 

Typically, the cross-correlation function will be similar to 
that shown in Fig. 2. The amplitude of the correlation func
tion is evaluated at the appropriate time delay, thus yielding a 
source strength associated with the monopole strength in the 
region of the measurement. 

The magnitude and phase of the source region's pressure 
intensity spectrum may be evaluated simply by performing the 
Fourier transform of the cross-correlation function in the 
vicinity of the appropriate time delay x/a0. By performing 
many cross-correlations between the near-field pressure 
gradient and far-field sound at various points near the 
propeller and in its wake, it is possible to determine the 

Fig. 4 Pressure gradient hydrophone 
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Fig. 5 Cavitation patterns for the three research propellers 

distribution of acoustic source strength produced by a 
cavitating propeller. 

Experimental Method 

Apparatus. A complete description of the Defence 
Research Establishment Atlantic (DREA) propeller noise 
facility and its capabilities is given in reference [7]. A short
ened version is presented here. The experiments are carried 
out in the well of the DREA Acoustic Barge [8], located in 
Bedford Basin. The Basin has a mean depth of 50 m and the 
bottom is covered with a deep layer of silt, giving it good 
acoustic absorption properties. 

Model propellers designed to produce various forms of 
cavitation are driven by a stationary drive pod suspended 2.67 
m below the water surface as shown in Fig. 3. The 26.5 kW 
electric motor installed in the pod will drive a 250 mm 
diameter propeller at revolution rates in excess of 2000 rpm. 
Instrumentation installed in the pod allows the measurement 
of propeller revolution rate and torque. 

The propeller cavitation state is observed or photographed 
through a periscope fitted to one of the barge well cross-
trollies. Lighting is provided by two high intensity strobe 
lamps mounted in water tight containers and fixed to a frame 
above the drive pod. 

A pressure gradient hydrophone was designed and built at 
DREA to enable measurement of the Vp„p term of equation 
(10) [9]. This hydrophone, shown in Fig. 4, consists of two 
ceramic cylinders mounted to a cylindrical probe. The two 
elements are gain and phase matched. The pressure dif-
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Fig. 7 The effect of bandwidth on correlation function overlap 

ference, Ap/Ax, an approximation of the pressure gradient, is 
measured by differencing the signals from the two elements. 
The spacing between the two elements (31.8 mm) makes the 
hydrophone effective over the frequency range of 1 to 20 kHz. 

The hydrophone was calibrated using the substitution 
technique. The sensitivity of the hydrophone is -200 dB re 1 
V//iPa at 1.0 kHz, and increases at 6 dB per octave to 20.0 
kHz, where the response deteriorates as a result of the half 
wavelength of the sound approaching the ceramic crystal 
spacing. The directivity of the hydrophone is the expected 
cosine pattern with broad-side rejection varying from 10 dB at 
1.0 kHz to 32 dB at 10.0 kHz. 

Propellers. Three propellers were designed for the initial 
experiments. They are two-bladed fixed-pitch propellers, 250 
mm in diameter, and were designed especially for the bollard 
pull condition. Experiments were carried out with the three 
propellers, which are shown in Fig. 5 along with their 
associated cavitation patterns. One was designed to produce 
extreme tip vortex cavitation, a second to produce normal tip 
vortex cavitation simultaneously with hub vortex cavitation, 
and a third to produce bubble cavitation. These will be 
referred to as the Tip Vortex No. 1 propeller, Tip Vortex No. 
2 propeller and Back Bubble propeller, respectively. 

The Tip Vortex No. 2 propeller and the Back Bubble 
propeller were designed with a spanwise circulation 
distribution that would normally be associated with reduced 
noise propellers, while the Tip Vortex No. 1 propeller has a 
circulation distribution biased toward the tip as shown in Fig. 
6. The two tip vortex propellers were designed so that bubble 
and sheet types of cavitation would be avoided, and only 
vortex types of cavitation would be present. The Back Bubble 
propeller was given excessive camber to encourage the 
development of bubble cavitation. 

Some Geometry Considerations. The theory developed • 
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Fig. 8 Criterion for minimizing correlation function overlap 

earlier, which allows the determination of acoustic source 
strength distribution near the propeller depends upon being 
able to evaluate the magnitude of the cross-correlation 
function Vp„p at the correct time delay. The typical cross-
correlation function shown in Fig. 2 is representative of one 
obtained in an anechoic environment. The time delay of the 
peak corresponds to the time required for the sound to travel 
from the near-field pressure gradient hydrophone to the far-
field hydrophone. 

With the experimental arrangement shown in Fig. 3, 
reflections of the sound from the propeller occur at the water 
surface and at the barge well side walls. The time taken for the 
sound travelling by these reflective paths to arrive at the far-
field measuring point is greater than that for the direct path. 
As a result, additional peaks occur in the correlation function. 
When the arrival time of the direct path is close to that of the 
reflected paths, overlap of the peaks can occur. This generally 
results in errors being introduced into the direct path in
formation. Also, as the bandwidth of the source signal 
decreases, the correlation function becomes more like a 
damped periodic function. The limit of zero bandwidth 
corresponds to a sine wave, the correlation of which is a 
cosine wave. For these cases where the source signal contains 
significant amounts of periodic information, it is virtually 
impossible to differentiate between the direct and reflected 
paths of the correlation function. Thus to obtain meaningful 
results from this technique in a non-anechoic environment, 
the geometry of the source and hydrophones must be selected 
so that the error from the reflective contribution to the 
correlation function is minimized. 

Before commencing experiments with model propellers, an 
analysis of this problem was carried out. Experiments were 
conducted using a J-l 1 projector as a source driven by a white 
noise generator. Through filtering, the bandwidth of the 
source signal was varied for various source to receiver 
spacings. This allowed an investigation of the effect on the 
correlation function overlap of both source bandwidth and 
source to receiver spacing. 

A typical result showing the effect of bandwidth on the 
correlation function is shown in Fig. 7. The top trace, which 
shows a correlation function with adequate time difference 
between the direct and reflected paths, allows a confident 
evaluation of the magnitude of the correlation function 
corresponding to the direct path. Note in this trace that the 
surface reflection appears as a negative-going peak owing to 
the pressure-release surface. In the bottom trace, the direct 
and surface reflected functions overlap as a result of the 
reduction in bandwidth of the source signal. Clearly this 
situation does not allow a confident evaluation of the peak-
level associated with the direct path. 

A simple mathematical model of the cross-correlation 
function for the direct and surface reflected paths was 
developed by combining expressions for bandwidth-limited 
correlation functions given by equation (11). Here T\ is the 
time for the sound to travel between the near and far-field 
sensors by the direct path and T2 the time for the reflected 
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path. This model agreed well with results obtained using the J-
11 projector driven with bandwidth-limited white noise, and 
so was used 

Rxy(T) = atB 
SimrB(T— Tj) 

TVB{T—T\) 

•KB (T — T2) 

coslirfoir-Tt) 

COS27T/0(T-T2) (11) 

to develop criteria based on bandwidth and time delay for 
acceptable correlation functions. 

A critical time delay (Arcrjl) is defined as the time required 
for one of the correlation functions to decay to 10 percent of 
the peak value. Thus, when combining direct and surface 
reflected path correlation functions, this critical time delay 
represents a criterion which poses a maximum 10 percent 
error on the peak value of the direct path correlation function. 
Using this criterion, a plot of the effect of source bandwidth 
and time delay on the correlation function overlap was 
generated, and is shown in Fig. 8. This graph gives com
binations of time delay difference, AT (a function of the 
positioning of near and far-field sensors) and source band
width which will produce a correlation function with errors of 
less than 10 and 5 percent. Clearly as the bandwidth of the 
source signal is reduced, the correlation function becomes 
more periodic and the required time delay difference becomes 
large. For a signal bandwidth of 1 kHz, Arail — 2.50 ms, 
which corresponds to a path length difference between the 
surface and reflected paths of 3.75 m. 

The effective frequency range of the pressure gradient 
hydrophone designed for the cross-correlation experiments is 
in excess of 10 kHz. For these tests, the near-field pressure 
gradient hydrophone and far-field hydrophone were 
positioned to give a AT of 4 ms, giving an expected overlap 
error of less than 1 percent. 

Propeller Wake Scans. Wake scans were carried out with 
the three experimental propellers to determine the location of 
noise sources along the propeller axis. To perform this ex
periment, the length of the hydrophone nose was reduced 
from 85 mm to 34 mm so that the pressure difference pair of 
elements could be positioned as close as possible to the 
propeller blade tips. The hydrophone was positioned 25 mm 
from the blade tip as shown in Fig. 9, and moved axially, 
starting upstream of the propeller, in 50 mm steps from 
nominally 350 mm upstream to 1500 mm downstream. This 
distance spanned the propeller, wake development, and 
cavitation collapse sectors of the cylindrical control volume 
around the propeller and its wake. 

At each measurement point, the pressure gradient and far-
field signals were measured, amplified, filtered between 1 and 
18 kHz, and recorded for later analysis. A portable 
correlation computer and spectrum analyzer were available to 
verify data as they were being recorded. 

Two wake scans were carried out with the Back Bubble 
propeller while only one was done with each tip vortex 
propeller. The cavitation states for the propellers were ob-

Propeller 
Tip Vortex No. 1 
Tip Vortex No. 2 

Back Bubble 

Back Bubble 

rpm 
1667 
1667 

1667 

1433 

Cavitation States 
Tip Vortex 
Tip Vortex 
Hub Vortex 
Bubble 
Tip Vortex 
Hub Vortex 
Tip Vortex 
Hub Vortex 

served and photographed through the periscope. Table 1 lists 
the conditions for each of the three propellers. 

All propellers were tested at 1667 rpm. The Back Bubble 
propeller was also tested at a lower rate to investigate the 
influence on pressure gradient and source strength 
distribution of the disappearance of bubble cavitation. 

The recorded data were analyzed using a Saicor correlation 
computer linked to a PDP 11/34 mini-computer. The results 
included averaged spectra of the near-field pressure gradient 
and the far-field noise, and the acoustic source strength at 
each discrete location along the cylindrical control volume 
surface where measurements were taken. These latter values 
were plotted as a function of the axial distance to give a source 
strength distribution. 

Results 

Pressure Gradient and Acoustic Spectra. Typical spectra 
for the near-field pressure gradient and far-field sound power 
for each propeller are shown in Figs. 10 and 11, respectively. 
The pressure-gradient spectra were measured at a point 254 
mm downstream of the propeller plane with the propellers 
turning at a rate of 1667 rpm. The spectra are relatively flat 
between 1 and 18 kHz, except at 6 kHz where a dip of about 5 
dB occurs consistently in all curves. This is an anomaly 
inherent in the measurement system. However, because it was 
consistent in all spectra, and because it occupied a relatively 
narrow band, it does not affect the end results. 

The high pressure gradient amplitude associated with the 
Tip Vortex No. 1 propeller is consistent with the results from 
the far-field hydrophone (Fig. 11). As can be seen from Fig. 
11, the level from this propeller exceeds those of the other two 
by as much as 19 dB. It also absorbed about 30 percent more 
power than the other two. This factor alone cannot explain 
the large difference between the level of its spectrum and 
those of the other two. Comparisons of spectrum levels at 
conditions of equal power showed that the Tip Vortex No. 1 
propeller was consistently noisier in the range of revolution 
rates from 1250 to 1800 rpm. The biasing of the loading 
toward the tip of this propeller would result in a stronger tip 
vortex, a greater amount of cavitation, and more noise. 

Near-Field Pressure Gradient. In the near-field of the 
propeller, the pressure gradient receives contributions from 
both hydrodynamic and acoustic pressure fluctuations. 
Generally, the hydrodynamic pressures are dominant, but do 
not propagate acoustically. Thus, the pressure gradient 
measurements alone will not necessarily reveal the true 
distribution of acoustic source strength in the propeller near-
field. However, when used together, the pressure gradient and 
acoustic source strength information provide a powerful 
means of investigating cavitation noise generation. 

The variation of near-field pressure gradient with axial 
distance along the propeller wake for the Tip Vortex No. 1, 
Tip Vortex No. 2, and Back Bubble propellers are shown in 
Figs. 12, 13, and 14. The distances are referenced to the plane 
of the propeller. Negative numbers indicate distances up
stream of the propeller plane, and positive numbers down
stream. 

The pressure gradient curve for the Tip Vortex No. 1 
propeller rises to a broad peak 250 mm downstream of the 
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Fig. 10 Pressure gradient spectra, 1667 rpm. Uncertainty in spectrum 
level is ±0.5 dB at 20:1 odds. Filter bandwidth is 50 Hz. 
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Fig. 11 Far-field sound spectra, 1667 rpm. Uncertainty in spectrum 
level is ±0.5 dB at 20:1 odds. Filter bandwidth is 50 Hz. 

propeller. The rise to and decay from this peak are rapid, 
indicative of a localized region of significant pressure 
gradient. Observations of the development of the cavitation 
revealed that this region of high pressure gradient occurred at 
the point where the tip vortex cavitation collapsed. 

The near-field pressure gradient for the Tip Vortex No. 2 
propeller are shown in Fig. 13. As shown in Table 1, the curve 
corresponds to a condition with both tip and hub vortex 
cavitation on the propeller. The curve shows a rise in the 
pressure gradient at the point downstream where the 
cavitating vortices were observed to collapse. The curve 
decays rapidly with increasing axial distance beyond the 
region of vortex collapse. 

The difference in the pressure gradient curves for the Back 
Bubble propeller with and without bubble cavitation are 
shown in Fig. 14. The top curve, which has two distinct peaks, 
corresponds to the condition with bubble, and tip and hub 
vortex cavitation present on the blades. The first peak occurs 
adjacent to the plane of the propeller and is probably 
associated with the bubble cavitation collapse on the back of 
the blades. The pressure gradient associated with the back 
bubble cavitation is greater than that for the vortex 
cavitation. The second peak, 350 mm downstream of the 
propeller plane, is produced by the collapse of the cavitation 
in the tip and hub vortices. The lower curve, which shows the 
results from a condition with no bubble cavitation present, 
has only one peak which is associated with the collapse of the 
tip and hub vortex cavitation. 

Taken collectively, these curves suggest that the regions of 
high pressure gradient are associated with the collapse of 
cavitation voids. These regions appear to be relatively 
localized considering the resolution capabilities of the 
pressure gradient hydrophone. The pressure gradient rises and 
decays quickly outside the region of high pressure gradient. 

Acoustic Source Strength. The results of the cross-
correlation between the near-field pressure gradient and the 
far-field acoustic pressure were employed with equation (10) 
to derive values for the acoustic source strength at a number 
of points in the near-field of the propeller. The results of the 
calculations are shown in Figs. 15, 16, and 17, for the Tip 
Vortex No. 1 propeller, Tip Vortex No. 2 propeller, and Back 
Bubble propeller, respectively. 
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The acoustic source strength distribution for the Tip Vortex 
No. 1 propeller (Fig. 15) shows that the majority of sound 
from this propeller originates from a narrow region down
stream of the propeller where the tip vortices were observed 
collapsing. This region, located at an axial distance of be
tween 250 and 400 mm, corresponds to the area of maximum 
pressure gradient in Fig. 12. The shape of the two curves 
differ, however, with Fig. 15 showing a much more localized 
source than Fig. 12. 

The spatial resolution of the two measurements is probably 
the cause of the different shapes of the pressure gradient and 
acoustic source strength curves. The spatial resolution of the 
pressure gradient measurement is governed only by the dipole 
directivity of the pressure gradient hydrophone, which is 
rather coarse; typically 360 mm for these wake scans, based 
on the 3 dB down point. The spatial resolution of the acoustic 
source strength measurement is enhanced by the use of the 
appropriate time delay in the determination of the magnitude 
of the cross-correlation function. The combination of the 
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Fig. 17 Source strength distribution, Back Bubble Propeller. Un
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directivity of the pressure gradient hydrophone and the use of 
time delay yields a spatial resolution of about 100 mm. 

The results for Tip Vortex No. 2 propeller (Fig. 16) show 
that the noise in the far-field originates downstream of the 
propeller. However, in this case the acoustic source strength is 
more evenly distributed with distance, has a lower maximum, 
and falls off more slowly than that of Tip Vortex No. 1 
propeller. 

As shown in Table 1, the cavitation conditions of Tip 
Vortex No. I and Tip Vortex No. 2 differed by the presence of 
a hub vortex on the Tip Vortex No. 2 propeller. The acoustic 
source strength results suggest that the hub vortex behaves as 
more of a line source which contributes to a distributed 
acoustic source strength (Fig. 16). 

The acoustic source strength distributions for the Back 
Bubble propeller are shown in Fig. 17 and should be com
pared with the pressure gradient curves of Fig. 14. The main 
difference between the two sets of curves is that the change in 

acoustic source strength at the propeller plane location when 
the bubble cavitation disappears is small relative to the change 
in pressure gradient. The difference in acoustic source 
strength is 4 dB as opposed to 12 dB for the pressure gradient. 
Further, the acoustic source strength of the bubble cavitation 
is slightly less than that for vortex cavitation collapse. This 
result also seems to be at variance with the pressure gradient 
data. However, hydrodynamic and acoustic pressure fluc
tuations contribute to the pressure gradient. The results 
suggest that the bubble cavitation produces high 
hydrodynamic pressure gradient levels, which do not 
propagate acoustically, and that the source strength of the 
vortex and bubble cavitation are of the same order for this 
condition. 

The curve in Fig. 17 for 1433 rpm has a similar broad shape 
to that of Fig. 16. In each of these cases only tip and hub 
vortices are present on the propeller. Thus it would appear 
that the hub vortex of the Back Bubble propeller is con
tributing to the distribution of the acoustic source strength in 
the propeller wake as was the case for the Tip Vortex No. 2 
propeller. 

Concluding Remarks 

This paper has described a method for determining the 
distribution of acoustic source strength in the near-field of a 
cavitating propeller by the use of cross-correlation. The 
technique described offers a powerful method for finding the 
mechanisms and locations of sound generation on and near 
the propeller. 

Results indicate that for propellers producing vortex types 
of cavitation, the noise is produced by the collapse of the 
cavitating vortices at points downstream of the propeller 
plane with the tip vortex producing a very localized point 
source, and the hub vortex producing a distributed line 
source. 

Propellers which develop both bubble and vortex types of 
cavitation produce an acoustic source strength distribution 
which is nearly constant from the propeller plane to the point 
of vortex cavitation collapse. Such a result could be explained 
by bubbles produced at the blade rebounding near the 
propeller, and by the tip and hub vortices collapsing farther 
downstream. 

The bubble cavitation produces high levels of pressure 
gradient compared to the pressure gradients associated with 
the vortex collapse region. However, as the acoustic source 
strength of the two regions are of the same order, the strong 
pressure gradient field of the bubble cavitation is relatively 
inefficient acoustically compared to the region of the vortex 
collapse. 
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Cavitation Damage in Polymer 
Aqueous Solutions 
Cavitation damage tests in polymer solutions are made with a vibratory cavitation 
apparatus. It is possible for this device to suppress the degradation of polymer by 
ultrasonic cavitation. Polymer solutions used are 100 wppm, 500 wppm, and 1000 
wppm solutions of Poly ox. The weight loss in 100 wppm Poly ox solution is larger 
than that in water, but in 500 wppm and 1000 wppm Poly ox solutions the weight 
losses after 60 min exposure to cavitation are relatively small. It is indicated that the 
cavitation damage in polymer solutions is subject to the effective influence of elastic 
properties of liquids. 

1 Introduction 

Cavitation damage is one of the major problems en
countered in the operations of hydraulic structures, water 
turbines and pumping machinery. Hitherto, cavitation 
damage in Newtonian fluids (mainly water) have been sur
veyed from various viewpoints, furthermore much in
formation about the effects of properties of liquids and 
hydrodynamic parameters on the damage has been obtained 
[1,2]. 

Since it has been found that the addition of small quantity 
of drag-reducing polymers suppresses cavitation occurrence 
[3, 4], the cavitation phenomena in polymer solutions have 
drawn a great deal of attention, and relatively much literature 
has been reported [5-10], However, there has been only a little 
amount of information about cavitation damage in polymer 
solutions. So far as our knowledge goes, there are papers by 
Shapoval and Shal'nev [11] and Ashworth and Procter [12]. 
Shapoval and Shal'nev performed an experiment of cavitation 
damage generated after a circular cylinder in a cavitating 
pipe, and found that the weight loss decreased by an addition 
of 300 wppm polyacrylamide into water. Ashworth and 
Procter reported the results of vibratory tests with small 
separation in 100 wppm and 1000 wppm polyacrylamide 
solutions, where the cavitation erosion rates were increased. 
Unfortunately the degradation rates of the polymer solutions 
used in their experiment were large, so it may be assumed that 
rheological properties of their polymer solutions were ap
preciably changed. 

The purpose of the present study is to clarify the effect of 
an addition of polymer on cavitation damage by using 
vibratory cavitation damage test apparatus. To suppress the 
degradation of polymer during test duration, the present 
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experimental device has a unique system of which fresh 
polymer solutions are supplied to the test vessel by a pump, at 
the same time, the polymer solutions degraded by cavitation 
are drained away. Polymer used in this experiment is Polyox 
WSR-301 which is often used in cavitation experiments. In the 
present experiment, the effects of polymer concentration and 
degradation on the weight loss are made clear, and the 
cavitation clouds and the damage patterns on the surface of 
test specimen are demonstrated. Comparisons between these 
results and the cases of water-glycerol solution are made. 

2 Experimental Equipment and Procedure 

Figure 1 shows schematically the arrangement of the 
vibratory cavitation facility used to study the effect of 
polymer additives on cavitation damage. The basic equipment 
comprised a commercial electrostrictive transducer driven at a 
nominal frequency of 19.5 ± 0.5 kHz with a peak-to-peak 

Power Supply 

Synchroscope 

Specimen s 

Test Liquid 

. Transducer 

Vibratory Horn 

Thermocouple 

Diaphragm 
Pump 

Constant 
Temperature 

Bath 

' Sump Pit Test Vessel 

Fig. 1 Schematic block diagram of the vibratory cavitation test facility 

1 3 4 / V o l . 107, M A R C H 1985 T r a n s a c t i o n s of the A S M E 
Copyright © 1985 by ASME

  Downloaded 02 Jun 2010 to 171.66.16.64. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Values of liquid viscosity i\ 

{V xlO3 [Pas], 4=295 K) 

--•-. Liquids 

Viscosity 
of fresh solution 

Equilibrium viscosity 
at 0=0.5x|0"3m3/mm 

Viscosity of completely 
degraded solution 

Uncertainty 

Water 

0.955 

— 

— 

+ 0,5 
percent 

100 wppm 
Polyox solution 

I. 12 

1.03 

— 

±2 percent 

500 wppm 

Poiyox solution 

1.95 

1.58 

. — 

±3 percent 

I000 wppm 
Polyox solution 

3 .57 

2 .72 

1.04 

± 5 percent 

water-glyceroi 
-solution 
(70:30, v/v) 

2 . 8 0 

— 

— 

±0.5 percent 

amplitude 38 ± 1 /mi. Simultaneously with the damage of the 
test specimen, the ultrasonic cavitation also degrades the 
polymer. In the present experimental system, cavitating 
liquids in the test vessel are suitably discharged to suppress the 
polymer degradation as far as possible. At the same time fresh 
polymer solutions adjusted to constant temperature in a bath 
are supplied into the test vessel by a diaphragm pump. To 
make a drainage of test liquids easy, the bottom of the vessel 
was made hemispherical in shape. The volume of test liquids 
in this vessel was 0.9 x 10_ 3m3 , the liquid temperature was 
maintained at 295 ± 1 K. The water-soluble polymer used in 
our paper was Polyox WSR-301 (Union Carbide Co., Ltd.). 
The concentrations of polymer solutions tested were c = 100, 
500, and 1000 wppm. For estimation of the degree of 
degradation of polymer solutions, the viscosities of fresh 
polymer solutions and degraded polymer solutions were 
measured using a capillary viscosimeter with thermostatic 
control. The test specimen is a cylinder which is 15.9 mm in 
diameter and 12 mm in height, whose material is 5056 
aluminum (tensile strength 2.45 x 108 N/m 2 , proof stress 
1.18 x 108 N/m 2 , Rockwell hardness HRB = 41.0). The 
specimen surfaces were polished with No. 3000 emery paper. 
The flow rate Q supplied into the test vessel was maintained at 
0.5 x 10~3 mVmin (the uncertainty is ± 2 percent). The 
submergence of the test specimen tip was 10 mm. Weights 
were measured before and at various intervals throughout the 
tests to an accuracy of 0.1 mg. Each measurement was 
repeated at least 5 times to assure consistency of results. For 
comparison, the tests for the cases of water and water-
glycerol solution (70:30, v/v) were also made. Moreover, 
photographs were taken of the cavitation cloud with an ex
posure time of 0.7 microsecond. 

3 Results and Discussion 

3.1 Effect of Polymer Addition on Weight Loss. Figure 2 
shows the weight loss WL-test time t curves in water (0 wppm) 
and 100 wppm, 500 wppm, and 1000 wppm Polyox solutions. 
For reference, the change in viscosities of the test liquids due 
to exposure to cavitation is shown on Table 1. Also, the values 
of air content a/as of liquids were 1.07 for water, 1.16 for 100 
wppm Polyox solution, 1.11 for 500 wppm Polyox solution 
and 1.13 for 1000 wppm Polyox solution, respectively, as 

being the saturated concentration in water. As is seen in the 
figure, the tendency of WL - t curve in 100 wppm Polyox 
solution is similar to the case of water, however the weight 
loss is large as compared with that in water. The tendency in 
500 wppm Polyox solution considerably differs from the tests 
in water and 100 wppm Polyox solution. That is, the weight 
loss is larger during the earlier period of the test, but af
terward the increasing rate of the weight loss decreases, and 
the weight loss after 60 min exposure to cavitation is one half 
of that in water. It may be regarded that the result of 1000 
wppm Polyox solution is roughly similar to the case in 500 
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Fig. 2 Effect of addition of polymer on the weight loss 
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Fig. 3 Effect of polymer degradation on the weight loss I: Case of Q = 
0.5 x 10~3m3 /min, II: Case of Q = 0, III: Case of completely degraded 
polymer solution, IV: Case of water 

wppm Polyox solution. In this case the weight loss in the 
initial stage is largest, but the damage rate decreases rapidly 
with the elapsed time, and consequently the weight loss at 60 
min is smallest. 

Also, the data in this figure were obtained within ex
perimental uncertainty of ± 9 to ± 14 percent. 

3.2 Effect of Degradation of Polymer. As stated in the 
former section, during the experiment of cavitation damage in 
polymer solutions, it it impossible to remove completely the 
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Fig. 6 Cavitation clouds and damage patterns of test specimen in
water
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Fig. 4 Changes in viscosity of 1000 wppm Polyox solution with ex·
posure time
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Fig. 5 Comparison of case of water·glycerol solution with polymer
solution

(0) 5 min (b) 15 min (cl 60 min
Fig. 7 Cavitation clouds and damage patterns of test specimen in 100
wppm Polyox solution

damage. The WI - t curve in case III for degraded polymers
differs entirely from case I where the degradation of polymer
was suppressed, and has the same tendency as in case IV of
water (Newtonian fluid). The increasing rate of damage in
case II during which the degradation was not controlled is
similar, in earlier test period, to case I, because the
rheological characteristics of the polymer solution are
sustained. But due to a progressive degradation with the
exposure time, at a later stage the tendency of the WI - t
curve is rather nearer to case III than case I.

Also, an experiment under the condition where the flow
rate was Q = 1.0 x 1O- 3m'/min was carried out. Its weight
loss-time relation was quite similar to the case for Q = 0.5 x
10 3m3/min.

The uncertainty of the results presented in Fig. 3 is ± 10
percent maximum, whereas ~the uncertainty of data in Fig. 4 is
± 5 percent.

3.4 Observations of Cavitation Clouds and Damaged
Patterns of Specimen Surface. For clarification of the results,
photographic observations of cavitation clouds and damaged
patterns of specimen surface were made.

3.4.1 Cases oj Water and 100 wppm, 500 wppm and
1000 wppm Polyox Solutions. First, Fig. 6 shows the result of
water for comparison with the cases of the polymer solutions.

3.3 Comparision With the Case of Water-Glycerol
Solution. Figure 5 shows a comparison with the case of a
70/30 mixture by volume of water and glycerol with the same
viscosity as 1000 wppm Polyox solution (Q = 0.5 x
10 3m.1/min). Although the weight loss in the water-glycerol
solution is smaller than that in water, due to an increase of
viscosity of the liquid, the tendency of the WI - t curve is
similar to water. It is evident, however, that the result differs
appreciably from that in 1000 wppm Polyox solution with the
same viscosity. This fact suggests that the cavitation damage
in polymer solutions is greatly influenced by the elastic
properties of the liquids.

The experimental uncertainty in this figure is ± 10 percent
maximum.
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effect of degradation of polymer. This implies that the degree
of degradation of polymer is one of the important parameters
against cavitation damage. Hence the tests of 1000 wppm
Polyox solution, as an example, were undertaken to deter
mine the influence of degradation on the damage. The result
is shown in Fig. 3. The changes in viscosities of the testing
solutions are thereupon represented in Fig. 4 and Table I.
Case I in the figure corresponds to the case where the flow
rate is Q = 0.5 x 10 - 'm3Imin. In this case, the value of the
viscosity falls rapidly within about 2 min after beginning the
test and then remains almost constant. In case II for Q = 0,
the viscosity decreases markedly during first 15 min, and
afterwards it approaches monotonically to a certain constant
value with time. Case III is the result in Polyox solution
previously exposed to cavitation during a long enough time,
so that it can be regarded as completely degraded polymer
solution. Case IV is for water. These results indicate that
polymer degradation has a great influence on the cavitation
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Fig. 10 Damage patterns 01 test specimen in 1000 wppm Polyox
solution under the condition of Q = 0

(c) 60 min

(c) 60 min

(b) 15 min

(b) 15 min(a) 5 min

(a) 5 min
Fig. 12 Damage patterns of test specimen in water·glycerol solution
(70/30 : v/v)

Fig. 11 Damage palterns of test specimen in completely degraded
1000 wppm Polyox solution

(e) 60 min

(c) 60min

(b) 15 mm

(b) 15 min

(0) 5 min

(0) 5 min
Fig. 8 Cavitation clouds and damage patterns of test specimen in 500
wppm Polyox solution

Fig. 9 Cavitation clouds and damage patterns 01 test specimen in
1000 wppm Polyox solution

The specimens in water were uniformly eroded with pits
surrounded by undamaged rims.

Figure 7 shows flash photographs of the cavitation clouds
and the specimen surfaces after being exposed to cavitation in
100 wppm Polyox solution for 5, 15, and 60 min. The damage
patterns in 100 wppm Polyox solution, unlike those in water,
have some stringy forms in the earlier stage. The neigh
borhood of rim is also eroded. A number of stringy forms
increase with the elapsed time and their shapes are extended.
Consequently, the more heavily damaged region spreads on
the specimen surface. This fact may be responsible for the
result that the weight loss in 100 wppm Polyox solution is
larger than in water.

Figure 8 is for 500 wppm Polyox solution. It is found that
in this solution dish shaped cavitation clouds occur, unlike the
case of water. As a result, the damage patterns also differ
remarkably from the cases of water and 100 wppm Polyox
solution. In a short period after beginning the test, stringy
damage patterns with deeper pits are generated and the rim of
the specimen is also eroded. This may be a cause for an in
crease of weight loss in the earlier stage. After that, although
the stringy damage progresses in depth and size and the
damage near the rim increases, considerably large undamaged
region was maintained. It is possible that this fact results in
the weight loss at t = 60 min decreasing (Fig. 2).

Figure 9 shows the case of 1000 wppm Polyox solution.
Similar results are found to the series shown in Fig. 8 for the
specimen in 500 wppm Polyox solution. That is, the damage
with stringy form on the specimen and the erosion of the rim
are produced. Larger undamaged region, that has only lost its
luster, remains. However the damage near the rim is small
compared with the case of 500 wppm Polyox solution. This
may be a reason why the weight loss at t = 60 min in 1000
wppm Polyox solution was least.

3.4.2 Case of Degraded 1000 wppm Polyox Solution.
Figure 10 shows the damage patterns exposed to cavitation in
1000 wppm Polyox soluton for which the degradation was not
controlled, that is, the flow rate Q = O. The damage pattern
at 5 min is similar to the result shown in Fig. 9 (Q = 0.5 x
10 - 3m 3/min). That is, the damage of the rim and the stringy

damage pattern appear, and the undamaged area on the
specimen remains fairly large. Since the degradation of
polymer progresses with exposure to cavitation, the damage
patterns are also changed with the elapsed time. As a result
the damaged area increases and then a large number of pits
are produced. This may be responsible for an increase of
weight loss (Case II in Fig. 3).

Figure 11 is for completely degraded 1000 wppm Polyox
solution. As is seen in these photographs, the damage pattern
in this solution has no characteristics as observed in fresh
Polyox solution at all, which is almost similar to the case of
Newtonian fluid (water). As noted above, it is evident that the
damage patterns change remarkably with degradation of the
polymer.

3.4.3 Case of Water-Glycerol Solution. Figure 12 shows
for the damage patterns in a water-glycerol solution. These
damage patterns are similar in form to the case of water, but
markedly differ from those in 1000 wppm Polyox solution
with the same viscosity. From a comparison of the results for
the polymer solution with water-glycerol solution, it may be
concluded that the cavitation damage in polymer solutions is
subject to the effective influence of the elastic properties of
liquids.

4 Conclusions

Damage tests of aluminum specimens in 100 wppm, 500
wppm, and 1000 wppm Polyox solutions, water and water
glycerol solution were made using a vibratory cavitation
damage apparatus. The effects of polymer additives on the
cavitation damage were made clear. It was quite possible for
the present device with flowing system to suppress
degradation of polymer. Results obtained were summarized
as follows:

(I) Case of 100 wppm Polyox solution: the weight loss is
larger than that in water. Initially, stringy damage pattern
appears on the test specimen. As time elapses, the form of the
damage becomes large and the damaged region extends all
over the specimen surface.
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(2) Case of 500 wppm Polyox solution: The weight loss in 
the initial is large compared with the cases of water and 100 
wppm Polyox solution. This is attributed to the appearance of 
a stringy damage pattern with relatively large pits. The stringy 
form elongates with the exposure time, but with little increase 
of the damaged area, as a result the weight loss after a test 
time of 60 min is less than for the cases of water and 100 
wppm Polyox solution. 

(3) Case of 1000 wppm Polyox solution: The results for 
the weight loss and the damage pattern are similar to those in 
500 wppm Polyox solution. The weight loss, for times up to 
about 10 min in this solution, exceeds the cases of water, 100 
wppm and 500 wppm Polyox solutions. But afterwards the 
increasing rate of damage is fairly reduced with test time, 
consequently the weight loss after 60 min is least. 

(4) The cavitation damage in polymer solutions is greatly 
affected by polymer degradation. The results for completely 
degraded 1000 wppm Polyox solution show similar trends to a 
Newtonian case. 

(5) The damage patterns of the specimen surface and the 
weight loss-time relation in 1000 wppm Polyox solution differ 
considerably from those in water-glycerol solution with the 
same viscosity. This fact may imply that the cavitation 
damage in polymer solutions is greatly influenced by elastic 
properties of liquids. 
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An Analytical Model for Prediction 
of Two-Phase (Noncondensable) 
Flow Pump Performance 
During operational transients or a hypothetical LOCA (loss of coolant accident) 
condition, the recirculating coolant of PWR (pressurized water reactor) may flash 
into steam due to a loss of line pressure. Under such two-phase flow conditions, it is 
well known that the recirculation pump becomes unable to generate the same head 
as that of the single-phase flow case. Similar situations also exist in oil well sub
mersible pumps where a fair amount of gas is contained in oil. Based on the one 
dimensional control volume method, an analytical method has been developed to 
determine the performance of pumps operating under two-phase flow conditions. 
The analytical method has incorporated pump geometry, void fraction, flow 
slippage and flow regime into the basic formula, but neglected the compressibility 
and condensation effects. During the course of model development, it has been 
found that the head degradation is mainly caused by higher acceleration on liquid 
phase and deceleration on gas phase than in the case of single-phase flows. The 
numerical results for head degradations and torques obtained with the model 
favorably compared with the air/water two-phase flow test data of Babcock and 
Wilcox (1/3 scale) and Creare (1/20scale) pumps. 

1 Introduction 

1.1 Background. During operational transients or a 
hypothetical LOCA (loss of coolant accident) condition, the 
recirculating coolant of PWR (pressurized water reactor) may 
flash into steam due to a loss of line pressure. The pressurized 
water will now contain vapors, the amount of which will 
depend upon the extent of the transient or accident condition. 
With such a two-phase flow medium as a coolant, it is well 
known that the recirculation pump becomes unable to 
generate the same head as that of the single-phase flow case. 
The degree of head degradation depends on physical, 
geometrical and thermal conditions, but it was indicated in 
various experiments that the head was almost totally lost 
under certain conditions. From a PWR's safety point of view, 
it is therefore essential to understand such phenomena and 
develop an analytical capability for accurately predicting the 
performance of PWR's cooling pump under the two-phase 
flow conditions. Such an analytical model can then be in
tegrated into PWR system thermalhydraulic analysis codes. 

Similar situations also exist in submersible pumps for deep 
oil well pumping where a fair amount of gas is contained in 
oil. The head of each pump in the multistage pump con
figuration is substantially lower than that of single-phase 
flow, thus resulting in many hundred stages of pumps. The 
same head degradation phenomena is prevalent, but in this 
case the two-phase flow media consists of oil and non-
condensable gas, unlike the above PWR cooling systems. 

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting, New Orleans, La., December 19-13, 1984 of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids 
Engineering Division, July 8, 1983. Paper No. 84-WA/FE-8. 

Since the mechanism of pump head degradation has not been 
well understood, effort has simply been made on separation 
of gas from oil. It is again desirable to understand the basic 
mechanism of head degradation so that proper pumps can be 
used for pumping gaseous oil from deep wells with a higher 
efficiency. 

1.2 Review of Past Test Programs. Extensive two-phase 
pump tests have been conducted to date (see Table 1 and a 
recent review article by Kim [1]), but the geometric and 
physical conditions were different in these testings. These 
include (i) scale and pump geometry, (ii) pump type (radial, 
mixed, or axial flow type) and, thus, specific speed, (iii) two-
phase flow media (condensable or noncondensable), (iv) 
pump operational conditions, and (v) line pressure. Due to the 
different pump features and test conditions existing in these 
tests, the results substantially differed from one to another. 

(/) Scale and Pump Geometry. As has been shown in 
Table 1, the scales of C-E (Combustion Engineering, see 
reference [2]) and Creare pumps [3] are 1/5 and 1/20, 
respectively. There existed some difference in homologous 
head between the C-E tests and Creare tests (see [3]). It is quite 
possible that the scaling of bubble size to pump size plays an 
important role in the head degradation mechanism. Another 
important factor related to the pump geometry will be that of 
detailed pump blade profile shape, as was pointed out by 
Chen and Quapp [4]. Although the specific speeds of the 
pumps tested in the Fast Loop Facility [4] and C-E were 
almost the same (see Table 1), the number of blades, exit 
blade angle, breadth ratio and diameter ratio were quite 
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Table 1 Review of past experiments 

COMPANIES 

C H A R ^ \ . 
ACTER-
IST1CS 

Scale 

Pump type 

Specific 
speed 
Two-phase 
test 
condition 

Flow rate 
(GPM) 
Speed 
(rpm) 

B&W1 

1/3 

Mixed 
Type 

4,317 

Air/Water 
(20-120 
psi) 

11,200 

3,580 

C-E2 

1/5 

Mixed 
Type 

4,200 

Steam/ 
Water 
(15-1250 
psi) 

3,500 

4,500 

CREARE3 

1/20 

Mixed 
Type 

4,200 

1) Air/Water 
(90 psi) 

2) Steam/ 
Water 
(400 psi) 

181 

18,000 

EG&G 
(FAST 
LOOP 

FACILITY) 

Mixed 
Type 

4,150 

Nitrogen/ 
Water 
(800 psi)*— 

4,500 

3,600 

EG&G 
(SEMI-
SCALE 

FACILITY) 

Not 
Scaled 

Radial 
Flow 
Type 
926 

Steam/ 
Water 
(200-900 
psi) 

180 

3,560 

KWU 

1/5 of 
German 
KWU 
Axial 

6,705 

Steam/ 
Water 
(15-1200 
psi) 

3,145 

8,480 

PWR 
PRIMARY 
COOLANT 

PUMP 
(BYRON 

JACKSON) 

1/1 

Mixed 
Type 

4,200 

Steam/ 
Water 
(15-2250 
psi) 

87,000 

900 

1) Babcock & Wilcox 
2) Combustion Engineering 
3) These pumps are geometrically similar, modeled after the Palisades LWR pumps. 

different. As a result, the head degradation of these two 
pumps exhibited quite different characteristics (see [4]). 

of (//) Pump Type and Specific Speed. The type ^ 
hydraulic pump is usually classified into three categories, 

radial, mixed and axial flow type. The pumps tested in the 
Semiscale facility [4], C-E/Creare and C-E for KWU (Kraft 
Werk Union of West Germany [5]) represent each of these 
three categories, as is shown in Table 1. Figure 1 shows the 
test results of these three different pumps at design condition, 

Nomenclature 

ah,ai = 
C„ = 

dn,ds = 

dm h,dm i = 

dK,dPs = 

F, = 

AHh,AH, 

A/icp, AM jp 

mh,mhmTp = 

AHK,AH„,AHS 

N 
P 

Po 
Q 

Q„Q„ 

n, 
s 
t 

T 

Vb 

W/,,Wi 

x 
a 

aN 

accelerations of bubble and liquid u 
drag coefficient v 
infinitesimal increments in the n- and s- v„ 
coordinates 
mass in the control volume, for bubble v1/ 
and liquid, respectively 
centrifugal force and pressure force 
acting on the control volume 
forces acting on the bubble 
gravitational constant 
normalized head (= H/HR) 
energy or head increase for bubble and 
liquid, respectively 
energy or head increase for the single-
phase and two-phase flows, respectively 
mass flow rate of bubble phase, liquid 
phase . and two-phase mixture, respec
tively 
head losses attributable to the exit flow 
velocity increase, void fraction change v 
and slip velocity, respectively PI^PI 
coordinate normal to the streamline 
coordinate, s pTP 

pump rotational speed (rpm) 
static pressure p*TP 

total pressure 
volumetric flow rate 
volumetric flow rate for liquid and subscripts 
bubble, respectively b,l 
radial distance measured from the center 
of rotation 1,2 
bubble radius 
streamline coordinate 
time R 
torque 

tangential velocity 
absolute velocity 
tangential component of the absolute 
velocity 
tangential component of the absolute 
velocity under the single phase condition 

, 4 
volume of bubble 

a = 

( - • * • ) 3 
flow velocity relative to the rotating 
blades in the s-direction 
m,,/mTP 

void fraction 
N/NR (normalized speed) 
geometric angle of the s-coordinate made 
with the circle whose center is the center 
of rotation 
nondimensional torque (= (T/TR)-
(PR/P)) 
Q/Qfi (normalized volumetric flow rate) 
densities of bubble and liquid, respec
tively 
two-phase flow density in homogeneous 
flows (= (1 -a)pi + a pb) 
two-phase flow density in separated 
flows (= mTp/(Q, + Qb)) 

denotes the qualities related to the bubble 
phase and liquid phase, respectively 
denotes the qualities related to the 
suction side and discharge side, 
respectively 
denotes the quantities at the rated 
condition 
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showing remarkably different characteristics in head 
degradation, i.e., larger head degradation for the radial-flow 
pumps and smaller head degradation for mixed/axial flow 
pumps (see also the paper of Lea and Bearden [6]). This seems 
to indicate that the blade-through flow dynamics have a 
significant contribution to the basic mechanism of pump head 
degradation under two-phase conditions. 

(///') Two-Phase Flow Media (Condensable Versus Non-
condensable). There existed again a large difference in the 
pump performance test results between the noncondensable 
gas/water tests and condensable steam/water tests (see Fig. 1 
and also the report of Creare [3]). Heidrick, et al. [7] 
presented important evidence which seemed to have provided 
an explanation for the difference. The reading of gamma-
densitometers installed at the inlet and outlet of the pump 
showed that the steam injected at the inlet entirely condensed 
through the blades and did not appear at the outlet up to the 
steam-to-water mass flow ratio, x = 0.015 (equivalent to 
a, = 0.2). It means that any adverse effect due to the existence 
of bubbles will only appear around the blade inlet area and 
then disappear towards the blade exit for low inlet void 
fraction cases. Therefore, the head degradation in con
densable steam/water media is much less than that of the 
noncondensable gas/water media. 

(iv) Pump Operational Conditions. Every pump is 
designed to operate with the best efficiency at the design 
condition. At a LOCA condition, the recirculation loop loses 
a substantial amount of coolant and also the pump-motor 
rotation speed may change. This will result in an off-design 
operation of the cooling pump where the blade-through flow 
pattern entirely changes. It was shown in various test results, 
e.g., see the paper of Runstadler and Dolan [8], that the 
degree of head degradation changed depending upon 
operational conditions. 

(v) Line Pressure. The upstream line pressure also seems 
to have a significant impact on the head degradation 
characteristics of two-phase flow pumps (see the report of C-
E [2] and also the paper of Lea and Bearden [6]). Generally 
speaking, the extent of head degradation is smaller for the 
higher line pressure. The reason for this fact may be three
fold, one related to possible cavitation appearance, the second 
due to the condensation effect and the third due to the density 
change of gas or steam phase. 

1.3 Data Analysis and Existing Semi-Empirical 
Correlations 

J.J.I Data Analysis. It was pointed out in the report of 
Creare [3] that there existed difficulty in analyzing the data 
taken by C-E and Creare to define the head increase across the 
pump. In their report, the total head increase H101a| was 
defined as 

S I T _ ( Pom Pin \ 1 r 2 ,, 2 l 
" l o l a l - I j + ~ lyout ~vm J 

Sc V Pom Pin ' 2gt. 

where p, p, v denote the static pressure, average density and 
velocity, respectively, and the subscripts, " in ," and "out" 
identify the quantities at the pump inlet and outlet, respec
tively. When this formula was used to plot the data of C-E 
and Creare, it was found that the head became negative even 
at near design point. As a result, Creare used a simpler form, 
i.e, static head increase: 

8 f, __ Pom ~~P'm 
- " s i a l i c — ~ -

Sc Pin 

With this definition, the data became a little more positive 
and thus understandable (see [3]). A question now arises as to 
whether or not the above definition is a right formula for the 
real pump head increase of the two-phase flow condition. 

— ™ — — - CREARE S/W CORRELATION (Mixed-Type Pump) 
— ™ — —™ CREARE A/W CORRELATION (Mixed- Tvpe Pump ) ~ 

" " " - " - = B&W CORRELATION (Mixed-Type Pump) 
— * . . — KWU S/W (Kastner, et. al.r j.]) (Axial Pump) ~~ 

— « « , . » » SEMISCALE/RELAP CORRELATION (Radial Pump] 

Fig. 1 Comparison of Creare A/W and S/W head correlations with 
B&W and Semiscale/ RELAP head multiplier correlations (after Creare 
Report [3]) (A/W and S/W stand for air/water and steam/water) 

This question should be clearly answered before even reducing 
the experimental data for comparisons with theories. 

1.3.2 Semi-Empirical Correlations. Based on the tests 
conducted to date, various empirical curves were constructed 
to characterize the pump performance operating under two-
phase flow conditions. Such curves include those of Babcock 
and Wilcox [9], Semiscale [4], C-E [2], and Creare [3]. All 
these curves are more or less similar in that the head and 
torque degradation of the pump are expressed by only one 
parameter, i.e., inlet void fraction a,, The approach of 
Wilson, et al. [10] was based on the single-phase ideal Euler's 
head equation in combination with various empirical head 
loss data for both single and two-phase flow media. It was, 
however, shown by Wilson that the correlation between the 
model and test data was rather limited. 

The work by Zakem [11] is similar to the method of Hench 
and Johnston [12], who used a one-dimensional control-
volume method for solving two-phase diffuser flow problems. 
Zakem applied the method to rotating machinery and then 
simply identified a nondimensional parameter. Data 
reduction with this new parameter for the test data of Bab
cock and Wilcox [9] resulted in some success. 

2 Analytical Model Development for Two-Phase Flow 
Pumps 

Based on the discussions provided above, it is apparent that 
the development of a new analytical model for characterizing 
the performance of two-phase flow pumps is in order. This 
should clarify the mechanism of pump head degradation 
under two-phase flow conditions by including com
pressibility, line pressure, condensation effect, flow regime, 
slippage of two-phase flow, and, of course, void fraction. A 
new analytical model which has been developed here is a first 
step for such a complete work. Although it neglects some of 
the above aspects (as will be stated in the following section), it 
is believed that the new method is the most rigorous and 
versatile one ever developed to date in this field. Furthermore, 
the final formula obtained from this new analytical model 
development conveniently reveals several important features 
for understanding the basic mechanism of two-phase flow 
pump head degradation. These features also serve as pertinent 
information concerning what type of. new two-phase flow 
pump tests are to be conducted in the future. 

2.1 Mathematical Formulation. The method used here 
is somewhat similar to that of Zakem [11], but the solution 
methods are quite different. Zakem applied the results of two-
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ds sin (T cos y = dr 

= sinp cos y 

Fig. 2 Control volume method for rotating machines and force 
diagrams 

phase flow equations only to a nondimensional analysis 
without investigating the basic mechanism of head 
degradation, whereas the present work defined the head 
degradation, and then analytically calculated it by solving the 
governing equations. 

A control volume method is employed to investigate the 
head degradation for the flow going through the blades of a 
pump under the two-phase flow conditions. In order to apply 
such a method we need to make the assumption that the 
trajectory of liquid be identical to that of bubbles so that we 
can use a control volume bounded by two streamlines. It is 
also assumed that the slip between the two phase flows be 
allowed. Furthermore, the effects of condensation and 
compressibility are neglected for simplicity so that p, and ph 

are assumed to be constant. 
The control volume used in the analysis is shown in Fig. 2 

where the streamline, s, and the line normal to the streamline, 
n, are used as the curvilinear coordinates. The control volume 
is composed of dn, ds and a unit thickness in the direction 
normal to the stream surface. 

The masses in the liquid phase and bubble phase, dm{ and 
dmi, contained in this control volume are given 

dnii = (1 - a)'dn»ds'Pi 

dtnh = a'dirds'Pi, 

(Iff) 

where a is void fraction; ph ph are the densities of liquid and 
bubble, respectively, and the subscripts / and b are used to 
represent the quantities for liquid and bubbles. Then, the 
momentum balance applied to this control volume in the 
direction of flow, i.e, s-direction, is expressed as follows, 

— (dm,-Wi + dm,,'Wh) = Fs (2) 
dt 

where 

Fs = external force acting on the control volume in the s-
direction, 

w,,wh = relative flow velocities of liquid and bubble, 
respectively in the ^-direction. 

The external force, Fs, consists of two components, namely 
the centrifugal force, dK, and pressure force, dPs, 

Fs = dK-dPs, (3) 

where 

dK = Gfrn>r»oo2»sin(3'»cos7 

dp 
dP. = — 'ds'dn, 

ds 

(4a) 

(4*) 

dm = dm i + dm i, (Ac) 

and r is the radial distance of the control volume center 
measured from the center of rotation, oo is rotational speed, )3' 
and 7 are the local geometric angles of the stream surface 
shown in Fig. 2 and p denotes the static pressure. From 
equations (2) to (4), assuming a steady state flow so that dm, 
and dm,, do not change along the streamline, we find 

dw" • - • a> dp w w sin/3 •cos-y — 'ds'dn 
dw, uwb 

dm, Ydmh — =aw/ ,»co 
dt dt ds 

(5) 

through the transport theorem. Equation (5) will become 

dw, dwh (1 - a)p, -—w, + upi, —- wb -• 
ds ds 

[p,(\-a) + pbcx]ru2 dr_ 

ds 

dp 

ds 
(6) 

where dr/ds = sin/3'«cos7, see Fig. 2 and equations (id), (lb), 
and (4c) have been used. Based on the assumption that all the 
quantities in the above equation (6) change along the 
streamline direction, s, we will be able to write (6) as 

d 
(l-a)p, + api, {pi,a + p,(\ -a)) 

(no)2 

+P 

+ 
r >V 
| P , — 

-(roi)1 wh
2-(ro3)2l da 

~2 P" 2 J ^ = 0 - (7) 

Integration of equation (7) from the suction side to 
discharge side, denoted by subscripts 1 and 2, respectively, 
yields 

(\-a2)p, 
w\i- •"2 , ^21,-"2 , ] 

— + a2p,, +p2j 

( l - « l ) p < 
wjr •u\ 

+ otiPb 
W\l- • « 1 

-Ph 
da 

~d7 

+Pi 

• ds = 0. 

Hi* wj • 

(8) 

The relationship obtained here is considered to be the 
Bernoulli equation for the rotating machinery operating 
under two-phase flow conditions. There exists a slip velocity 
between the liquid and bubbles and therefore the void fraction 
is allowed to change. It must be pointed out, however, that in 
equation (8) any nonmechanical head loss existing in actual 
pump operations, such as head loss due to the frictional drag, 
has been neglected. However, such an assumption will not 
affect the final results in determining the two-phase flow head 
degradation, as will be explained later. 

We now determine the head degradation of the pump 
operating under the two-phase flow condition. The energy 
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(a) ENTRY VELOCITY TRIANGLE (bl DISCHARGE VELOCITY DIAGRAM 

Fig. 3 Velocity triangles 

increase in the two-phase flow, AHTP, can be expressed as a 
sum of the energy increase in the liquid phase, AH,, and that 
in the bubble phase, AHh, 

AHTp-mTP = AHi-mi + AHb-mb (9) 

where rhTP, mt and mh denote the mass flow rate of the 
overall two phase flow, liquid and bubbles, respectively, and 

mTP = mi + mh (10a) 

m, = drt'{\-a)v/i'Pi (105) 

mh = dira'Wh-ph. (10c) 

Assuming that the flow is inviscid and incompressible with 
no thermodynamic effects, we can write AH, and AHh in 
terms of the difference in the total pressures between the 
suction and discharge sides, 

Pon-Pan Pi~P\ 
AH, 

AH„ 

v\r vl 
Pig 

P02b ~Po\b 

Pig 

Pl-Pl v\i, 

PbS Pi,g 

where g denotes the gravitational constant. 
From equations (9) and (11), 

2g 

2g 

v\b 

^Tp=PlZPl+
v-- •vl 

Pfpg 2g 
(l-x) + 

v\h ~ v2u, 

2g 

( H a ) 

(115) 

(12) 

where 

" ' " Q, + Q„' 
Qi = dn-{\-~a)-w,, 

Qi, = dn-a-w,,, 

x = m,,/mTP, 

-x = m,lmTp. 

\u) 

(14a) 
(14ft) 

(15a) 

(155) 1 

PPP is an average density in the separated two-phase flow 
condition, which will be reduced to the two-phase density, 
pTP, of the homogeneous flow if w, = wh, where 

PTP = (\ -Ot)'Pi + U'ph. (16) 

It should be noted that pfP is constant since mTP, Q, and 
Q,, are constant owing to the conservation law of the mass 
and flow rate under the incompressible flow assumption. 
Equation (12) should represent the head increase of the two-
phase flow pump and should be compared with the one used 
by Creare [3] see Section 1. It can be seen that the formula 
used by Creare for test data reduction more or less agrees with 
equation (12) except for the dynamic head terms since at far 
upstream p*rP = pIN. It means that as long as the dynamic 
head terms are negligibly small compared to the static 
pressure term, the formula lof Creare [3], intuitively derived, 
is acceptable. 

The term (p2~P\) in the Bernoulli equation (8) is sub
stituted into the same term in equation (12), 

(1 - ct2)Pi w2j—u2 

AH7 
PTPI 

<*iPh 

Pri'g 
-j,} 

( 1 - a , ) ? , w\i-u] aiPi, w]„-u} 

Pfpg Pfpg 

— (l-x)+ x 
2S 2g 

2 / !,,,?_ 1,2 w J - u 2 \ da 1 f / wj-uz wf,-u'\ 

pfpg J ' ^ 2 2 / ds 
-ds. 

(17) 

Use of equations (10), (14), and (15) and of velocity 
relationship w2 - v2 = (u - v„)2 - vu

2 (see Fig. 3), provides 

AHTP = AHSp-AHtl,-AHs-AHl„ (18) 

where 

AHSP = {\-xy 
vltUi-vlUi VuhUl-VuWl 

AH^ (l-x) 
Avu2lu2 

+ X' 

AHS = (1 

+ *• 

Ay„26«2 

w2j-

(19) 

(20) 

-*).U.(^-l) 

i , . I 1 1 — +x- ( l - a 2 ) H 
\ wu / 2g J C V w2h 

0 \w]h / 2g ) 

AH„ 

and 

2g 

1 r 2 / wj-u2 

fp-g\>\p<^-pfpg 
-pi, 

w2, — u2\ da 

ds 

vu\ = v\!\ ~ ̂ vu\ > tangential component of v2 

vu2 — V!L> ~ Av,l2, tangential component of vt 

(21) 

-ds, (22) 

(23) 

In the above equations, all velocity components are those of 
the two-phase flow conditions except for the ones with the 
superscript " 1 0 . " They designate quantities belonging to the 
single phase conditions. It means that the velocity component , 
e.g. y','24, is different from v]„f by Av,l2 due to the two-phase 
flow condition as is shown in Fig. 3. It must also be men
tioned that the definition of AHW, AHS and AHa in equation 
(18) has been arbitrarily made . Although we can name (AHW 

+ AHS + AHa) as A// t o t a , , it was decided to use these three 
separate terms; AHW is due to the increase of the relative 
speed w of liquid port ion at pump exit caused by two-phase 
flow condition, AHS is attr ibutable to the slip velocity bet
ween the liquid and bubble phases and AHa is due to the 
variation of void fraction along the flow passage between the 
blades. Equat ion (18) will then be written 

AHT 

AH, 

A//„, + A / / , + A//„ 

AHZ, 
(24) 

This relation in equation (24) provides the ratio between the 
two-phase flow pump head and single-phase flow pump head. 
It must be pointed out here that since actually measured AHSP 

will be used in obtaining the ratio of AHTP to AHSP in 
equation (24), the previously omitted nonmechanical, head 
loss which was not included in Euler 's formula, has now been 
recovered. It should also be noted that if there exists no slip 
velocity ( i . e . , w / = w/, and consequent ly da/ds = Q), 
AHu. = AHs = AHl) = Q. For such a homogeneous two-phase 
flow case, AHTP/AHSp becomes unity, indicating no head 
degradation within the framework of current assumptions. 

This new formula for the head degradation rate should be 
compared to the one previously given by Creare [13], i.e., 
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Fig. 4 Bubble geometry and force 

AH T PTP 

An An 
— (\-x)+ — X 
Pi Pb 

(25) 

where Ap is the static head increase between the pump suction 
and discharge sides and pTP is the two-phase flow density 
under the homogeneous flow condition. The above formula 
of Creare was simply based on the intuitive definition, not 
reflecting any pump flow phenomena. 

In order to calculate the quantities of A//,,,, AHS and AHa 

in equation (22), we should know the detailed data for the 
relative velocities for both the liquid and bubbles, as well as 
the void fraction along the path of blade-through flow. Hench 
and Johnston [12] applied the momentum equation to the 
bubble for this purpose, when they solved the problem of two-
phase diffuser flows. Applying the same philosophy to the 
present rotating machinery problem, 

(26) 

where 

\jFs = (Pressure Force) + (Centrifugal Force) + (Drag 
Force) + (Virtual Mass Force) (27) 

and Vh denotes the volume of bubble. Each force acting on 
the bubble can be written in the following form (see Fig. 4); 

(Pressure Force) = -
dp_ 

ds 
•Vh (28a) 

(28ft) (Centrifugal Force) = pb Vb ra>2 sin/3' • C0S7 

(Drag Force) = Cd» -pr(w, — wb)' \w,-wb\wb
2 (28c) 

(Virtual Mass Force) = pl'Vh'(ab — al) (28d) 

where 

r,, = radius of bubble, assuming that the bubble is 
spherical, 

dwb dwb dwb 

at 

dt 

dw/ 

~dt 

dt ds 

dwt dw, 
3/ ' ds 

(29a) 

(29b) 

Assuming the steady-state flow condition and substituting 
equations (28) and (29) into equations (26) and (27), we obtain 

dw,, 1 / 
P"W"^+2f"V 

dWj, 

ds 

dw, \ 

"'-ds-) 

dp 

ds 
+ pbr•oJ2sm|3, 

•COS7 + 
Cj 3 

rb 8 
Pl'(W,-Wb)\Wi-Wb\. (30) 

Equation (30) is now combined with the momentum 
equation for the two-phase mixture, equation (6), to eliminate 
dp/dsterm, 

m) 1 

[ 
1 da. 1 d(dn) 

Pr(dn)2 (I-a) L(l-o!) ds (dn) ds 

m 
+ 

\ —a f 1 dot f 1 da 
La ds 

1 d(dn) 

( 

pb(dn)2 a2 L a ds {dn) ds 

1 |Y mh \ 2 / 1 da 1 d(dn) 

\ph»drfa' \ a ds (dn) ds 

mf \ 2 / 1 da 1 d(dn) 

+ 2P> 

Pi'dn'(\ -a)/ V I - a ds (dn) ds 

= (p, — pb)(\-a)ra)2 sin/3'»C0S7 

Q 3 r mj_ 

rb 8 \-Pi'dn'(\ • (1 - a) pb'dr\'a pt-dri'(\ - a ) 

(31) 
pb'an'a 

where the mass conservation equations (10a) and (10i>) have 
been used. 

This differential equation contains only one variable, i.e, a, 
and all other quantities here are either constant or known as a 
function of s. The quantities which belong to the former 
category include mh mb, ph pb, and w, whereas those which 
belong to the latter category include (dn), r sin/3' and cosy. 
Therefore, if the boundary conditions at the suction side are 
known, the ordinary differential equation of (31) can be 
solved for a along5. Once a(s) is obtained,/?(s) can be solved 
by using either equation (6) or (30). Furthermore, w, and wb 

will be determined from the mass conservation equations in 
(10i>) and (10c). Now all quantities necessary for calculating 
AH„, AHS, and AH„ are made available. 

Torque. The calculations of torques corresponding to the 
degraded heads of the pumps operating under two-phase flow 
conditions will be made possible with a simple assumption as 
follows. For the case of single-phase flow, the relationship 
between the torque, head and flow rate is written 

TH.o> = (H^ + AHH)'Q.p.g (32) 

where HH is the actually measured single-phase flow head 
and AHX4> is the head loss, corresponding to a portion of the 
input torque not converted into head. Assuming that the same 
amount of head loss, A// ] 0 , can be applied to the two-phase 
flow cases, we can define the torque for two-phase flow 
conditions 

Tu.o> = (Hu + AH^).Q.p*Tp.g. (33) 

By eliminating AHi4, from equations (32) and (33), 

T2,t,'u> = (H2j>-HH)'Q>p*Tp'g+T^(j>. 

Normalization of each term in the above equation will yield 

ft>0 _ ( hu hH \ v | /3,0 

<*N aN 
/ aN 

VR + 
aN-

(34) 

where 

VH = hydraulic efficiency of the pump at the rated con
dition for the single phase flow 

HRQRPZ 

TRUR 

h = normalized head (= H/HR) 
aN = normalized rotational speed (= N/NR) 

0 = normalized torque(= (T/TR) '(pH/p)) 
v = Q/QR 

H = head 
N = rotational speed 
T = torque 
Q = volumetric flow rate, 
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Fig. 5 Comparison of present theory for homologous heads with 
Creare and B&W data for Wajy between 0.2 and 0.8 
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Fig. 6 Comparison of present theory for homologous heads with 
Creare and B&W data for WaW between 0.8 and 1.2 
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Fig. 7 Comparison of present theory for homologous heads with 
Creare and B&W data forW«N between 1.2 and 1.3 
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Fig. 8 Comparison of present theory for homologous heads with 
Creare and B&W data for vlaN between 1.3 and 2.0 

and subscripts "R" denote the quantities at the rated con
dition. All the quantities necessary for the above equations 
are available either from the single-phase pump test results or 
from the results obtained with the present analytical model 
calculations. 

3 Comparisons Between the Theory and Test Data 

The analytical model developed here was used to calculate 
the head degradation and torque for the pump tested by 
Babcock and Wilcox (1/3 scale) and Creare (1/20 scale), 
operating under air/water two-phase conditions. The input 
data necessary for such calculations included in the single-
phase flow performance of the pump, pump geometry, rated 
conditions, physical parameters of air and water, drag 
coefficient, Cd and bubble size, rh. 

The last two values, Cd and /-,,, employed in the present 
calculations were the same as those used by Hench and 
Johnston [12]. First, they classified the flow into two regimes 
depending upon the local void fraction, a, i.e., bubbly flow 
regime for a = 0.3 and churn-turbulent flow regime for 
a > 0 . 4 . In the bubbly flow regime, it was found in their 
experiments that the bubble radius was about 0.0625" ( = 
1.59 mm) and thus the corresponding drag coefficient was 
determined to be 0.54 based on the experimental data of 
Haberman and Morton [14]. Regarding the choice of Cd and 
/•,, for the bubbly flow regime, it was reported in the paper of 
Hench and Johnston [15] that the relative sensitivity of the 
results of this analysis to bubble size and drag coefficient in 

the range of interest was shown to be small. For the churn-
turbulent flow regime, the drag coefficient is drastically 
reduced. A combined relationship between Cd and /-,, was 
empirically obtained by Zuber and Hench [16] 

Cd 

— =2.79(1 a) 3 ( in- ' ) , or . 11(1-a) 1 (mm ') . 

It must also be mentioned that the added mass term was 
dropped from equation (31) since the term applies only to 
spherical bubbles and therefore is not appropriate for the two-
phase flow of churn-turbulent regime. Hench and Johnston 
also pointed out that this term is negligibly small compared to 
other terms in the equation. The values for Cd/rh between 
a = 0.3 and 0.4 were those of linear connection between these 
two points. 

Figures 5 to 8 show the homologous heads calculated from 
the present analytical model in comparison with Babcock and 
Wilcox (1/3 scale) and Creare (1/20 scale) air/water test 
results. It is seen that the overall agreement is excellent, 
particularly for the homologous flow parameter, v/as~\, 
i.e., near the rated condition. The trend of measured head 
degradations is well represented by the present analytical 
model, i.e., a relatively mild head degradation up to a, (inlet 
void fraction) = 0.2, then a sudden drop between a, = 0.2 
and 0.3, followed by a fairly flat low head for 0.3 = a, = 
0.9 and a return to the single-phase homologous heads as a, 
reaches unity. 

It must be mentioned that the test data shown here were 
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Fig. 9 Relative liquid velocity changes along the flow passage for 
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Fig. 10 Relative gas velocity changes along the flow passage for 
vlaf) = 1.0 

taken from the report of Creare [3] in which the data were 
classified as a function of wide range of v/aN values, except 
for 1.2 ^ v/aN Sr 1.3. The test data for 0 ^ v/aN ^ 0.8, 
0.8 ^ i>/aN 5? 1.2 and 1.2 S v/aN =? 2.0 were all lumped 
together, as seen from Figs. 5 to 8. Although the report of 
Creare [3] stated the insensitivity of head degradation to the 
homologous flow parameter v/aN, theoretically there exists a 
clear distinction in head degradation for different values of 
v/aN. It seems that the difficulty in classifying the test data as 
a function of v/aN is attributable simply to wide scattering of 
the test data. 

The basic mechanism of these head degradations shown in 
Fig. 5 to 8 has already been explained in the previous section. 
However, it will more clearly be understood by investigating 
the detailed quantities of blade-through flow obtained in the 
present calculations. Figures 9 to 11 show change of liquid 
and gas flow relative velocities and local void fraction, 
respectively, along the flow passage. Homologous flow 
parameter is v/aN = 1.0 and the inlet void fractions were ax 

= 0.1, 0.25, 0.4, 0.7 and 0.9. Due to the difference of flow 
media densities between water and air, the former is subject to 
larger external force, in this case, centrifugal force, than the 
latter. Consequently, the water is accelerated faster and the 
air is decelerated slower than in the case of single-phase flow. 
This acceleration of the water contributes to the major part of 
head degradation, i.e., in terms of AHw. 
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Fig. 11 Void fraction changes along the flow passage for vlaN = 1.0 
forthe inlet void fractions, a-\ = .1 , .25, .4, .7, and .9 
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Fig. 12 Comparison of present theory for homologous torques with 
Creare and B&W data for i /aN between 0.8 and 1.2 

Figure 11 shows a continuous increase in local void fraction 
along the flow passage, indicating larger population of air 
bubbles towards the pump outlet. Patel and Runstadler 
reported in their paper [17] that the large void in the impeller 
was observed in air/water pump tests. Murakami and 
Minemura [18] pointed out the association of large void 
formation with an extensive degradation of pump head. 
Photographs taken by Manzano-Ruiz and Wilson [19] also 
showed some evidence of bubble agglomeration. The effect of 
centrifugal force on the head degradation also seems to ex
plain the more severe head degradation for the radial flow 
pumps in which the centrifugal force is the major head 
generation force. The fact indicates that use of axial-flow 
pumps may provide better performance than radial- or mixed-
flow pumps in two phase flow conditions (see Fig. 1). 

For extreme off-design condition cases, such as v/aN = 
0.4 (Fig. 5) or v/aN ^ 2.0 (Fig. 8), some discrepancy between 
the analytical results and test data exists. It is not surprising to 
find the discrepancy at such extreme conditions. Despite the 
physical fact that the streamline profile shapes may be sub
stantially different near the blade inlet area between the 
design condition and off-design conditions, the present model 
only used those of the design condition. It is indicative based 
on this fact that the future analytical model may need to 
employ flow passages at off-design conditions different from 
that of design condition. 

Figure 12 shows the calculated homologous torques 
corresponding to the cases of Fig. 6. Again the overall 
agreement with test data, particularly with those of Creare, is 
good. It is not known why the test data of Babcock & Wilcox 
are so scattered. The.limiting values of homologous torque 
test data as o, — 0 do not match with the single-phase 
measured data which are shown by the analytical results at at 

= 0. This fact indicates substantial error in measurements. 
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Although such errors were observed in the homologous head 
measurements (see Figs. 5 to 8), the degree of the errors was 
much smaller. As far as torque measurements are concerned, 
those by Creare are less scattered and compare favorably with 
the analytical results. 

4 Conclusions 

Based on the one dimensional control volume method, an 
analytical model has been developed to determine the per
formance of pumps operating under two-phase flow con
ditions. The analytical method developed here has in
corporated pump geometry, void fraction, flow slippage and 
flow regime (implicitly through the bubble diameter and drag 
coefficient) into the basic formula, but neglected the com
pressibility and condensation effects. 

During the course of model development the basic 
mechanism of head degradation was identified. Three 
separate terms contributing to the head degradation are called 
here A//„., AHS, and A//„. AH„, is due to the relative flow 
speed increase of liquid particles at pump exit, AHS is at
tributable to the slip velocity between two phases at inlet and 
exit and AHn stems from the void fraction change along the 
flow passage. It has been found in the numerical calculations 
that the A//„,'s contribution to the head degradation is much 
larger than the sum of (A//s. + A//„). 

The numerical results for head degradations and torques 
were obtained and favorably compared with the test data of 
air/water two-phase flow conditions obtained by Babcock & 
Wilcox (1/3 scale) and Creare (1/20 scale). The overall 
agreement is excellent despite the fact that the test data were 
so scattered and inconsistent. 

For the extreme off-design conditions, some discrepancy 
existed in the above comparison. It seems that the pre
determined stream-surface used in the analysis will need 
modification for such extreme off-design conditions. 

Furthermore, in order for the analytical model to be able to 
determine the performance of steam/water two-phase flow 
pumps, the condensation and compressibility effects will have 
to be properly incorporated. 
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Correlation of Cavitation Erosion and 
Sound Pressure Level1 

F. G. Hammitt.2 This investigation of correlation between 
cavitation erosion rate and cavitation noise in several flow 
situations, even for only single material (commercially pure 
aluminum), I believe is most useful and helpful to the overall 
field of damage prediction. We have done some similar work 
(l,eg.), emphasizing single-bubble collapse noise energy spec
tra rather than overall noise, and have also found quite linear 
correlations with the same material. Though some tests have 
been made, less information is available at this time for other 
materials. 

By P. A. Lush and B. Angell, published in the September 1984 of the JOUR
NAL OF FLUIDS ENGINEERING, Vol. 106, No. 3, pp. 347-351. 

Professor, Mechanical Engineering Department, University of Michigan, 
Ann Arbor, Mich. 48109 

In any case, I want to strongly encourage continued similar 
work elsewhere. I still believe, however, that more general cor
relations can be obtained only if high-frequency collapse 
pulses are considered.3 

Authors' Closure 

The authors are grateful for Professor Hammitt's en
couragement and, from more recent work, can confirm that 
the use of high frequency sound gives a better linear correla
tion between sound level and erosion rate. However, we doubt 
that the use of pulse counting techniques will offer any signifi
cant improvement unless a suitable threshold level is intro
duced. It is hoped to offer the new work for publication in the 
JOURNAL OF FLUIDS ENGINEERING in the near future. 

F. G. Hammitt, Cavitation and Multiphase Flow Phenomena, McGraw-Hill, 
1980. 
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